Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
J Chem Inf Model. 2012 Feb 27;52(2):396-408. doi: 10.1021/ci200520g. Epub 2012 Jan 17.
Quantitative structure-property relationship (QSPR) models used for prediction of property of untested chemicals can be utilized for prioritization plan of synthesis and experimental testing of new compounds. Validation of QSPR models plays a crucial role for judgment of the reliability of predictions of such models. In the QSPR literature, serious attention is now given to external validation for checking reliability of QSPR models, and predictive quality is in the most cases judged based on the quality of predictions of property of a single test set as reflected in one or more external validation metrics. Here, we have shown that a single QSPR model may show a variable degree of prediction quality as reflected in some variants of external validation metrics like Q²(F1), Q²(F2), Q²(F3), CCC, and r²(m) (all of which are differently modified forms of predicted variance, which theoretically may attain a maximum value of 1), depending on the test set composition and test set size. Thus, this report questions the appropriateness of the common practice of the "classic" approach of external validation based on a single test set and thereby derives a conclusion about predictive quality of a model on the basis of a particular validation metric. The present work further demonstrates that among the considered external validation metrics, r²(m) shows statistically significantly different numerical values from others among which CCC is the most optimistic or less stringent. Furthermore, at a given level of threshold value of acceptance for external validation metrics, r²(m) provides the most stringent criterion (especially with Δr²(m) at highest tolerated value of 0.2) of external validation, which may be adopted in the case of regulatory decision support processes.
定量构效关系(QSPR)模型可用于预测未经测试的化学品的性质,从而为新化合物的合成和实验测试制定优先级计划。QSPR 模型的验证对于判断此类模型预测的可靠性起着至关重要的作用。在 QSPR 文献中,现在非常重视外部验证,以检查 QSPR 模型的可靠性,并且预测质量在大多数情况下是基于对单个测试集的性质预测的质量来判断的,这反映在一个或多个外部验证指标中。在这里,我们已经表明,单个 QSPR 模型可能表现出不同程度的预测质量,这反映在外部验证指标的一些变体中,例如 Q²(F1)、Q²(F2)、Q²(F3)、CCC 和 r²(m)(所有这些都是预测方差的不同变体形式,理论上可能达到 1 的最大值),这取决于测试集的组成和测试集的大小。因此,本报告质疑了基于单个测试集的“经典”外部验证方法的常见做法的适当性,并因此根据特定的验证指标得出了模型预测质量的结论。本工作进一步表明,在所考虑的外部验证指标中,r²(m)与其他指标的数值存在统计学上的显著差异,其中 CCC 是最乐观或最宽松的。此外,在为外部验证指标接受的给定阈值水平下,r²(m)提供了最严格的标准(尤其是在可接受的最大Δr²(m)值为 0.2 的情况下),这可在监管决策支持过程中采用。