Suppr超能文献

利用拓扑指数和回归模型预测黄酮类化合物的物理化学性质。

Predicting flavonoid physicochemical properties using topological indices and regression modeling.

作者信息

Li Huili, Yousaf Shamaila, Shahzadi Komal, Ibrahim Sobhy M M, Aslam Adnan, Zhang Guoping, Tola Keneni Abera

机构信息

School of Software, Pingdingshan University, Pingdingshan, 467000, China.

International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5, Pingdingshan, 467000, Henan, China.

出版信息

Sci Rep. 2025 Jul 29;15(1):27540. doi: 10.1038/s41598-025-11084-w.

Abstract

Flavonoids, a diverse class of polyphenolic phytochemicals, exhibit multifaceted biological activities critical to human health. This study leverages degree-based topological indices (TIs) to predict six physicochemical properties of sixty flavonoids using linear, quadratic, and logarithmic regression models. Statistical validation via correlation coefficients ([Formula: see text]), Root Means Square Error (RMSE), and Mean Absolute Error (MAE) revealed robust predictive power, particularly for molar refractivity ([Formula: see text], RMSE [Formula: see text], MAE [Formula: see text]), molar volume ([Formula: see text], RMSE [Formula: see text], MAE [Formula: see text]), and enthalpy of vaporization ([Formula: see text], RMSE [Formula: see text], MAE [Formula: see text]). Quadratic models consistently outperformed linear/logarithmic approaches, indicating nonlinear relationships between TIs and properties. The methodology offers a cost-effective tool for prioritizing bioactive flavonoids in drug discovery, validated by strong agreement between predicted and experimental values for external compounds (e.g., Procyanidin B2: molar refractivity RMSE [Formula: see text]). This work bridges cheminformatics and QSPR, enabling rapid property estimation for polyphenolic systems.

摘要

黄酮类化合物是一类多样的多酚类植物化学物质,具有对人类健康至关重要的多方面生物活性。本研究利用基于度的拓扑指数(TIs),通过线性、二次和对数回归模型预测60种黄酮类化合物的六种物理化学性质。通过相关系数([公式:见原文])、均方根误差(RMSE)和平均绝对误差(MAE)进行的统计验证显示出强大的预测能力,特别是对于摩尔折射率([公式:见原文],RMSE [公式:见原文],MAE [公式:见原文])、摩尔体积([公式:见原文],RMSE [公式:见原文],MAE [公式:见原文])和汽化焓([公式:见原文],RMSE [公式:见原文],MAE [公式:见原文])。二次模型始终优于线性/对数方法,表明TIs与性质之间存在非线性关系。该方法为药物发现中生物活性黄酮类化合物的优先级排序提供了一种经济有效的工具,通过外部化合物(如原花青素B2:摩尔折射率RMSE [公式:见原文])的预测值与实验值之间的高度一致性得到验证。这项工作架起了化学信息学和定量构效关系(QSPR)之间的桥梁,能够快速估计多酚系统的性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec23/12307745/8d831025441c/41598_2025_11084_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验