Suppr超能文献

肠杆菌科(γ-变形菌)内共生的多种起源:复杂系统发育方法的趋同。

Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches.

机构信息

Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 37005, Czech Republic.

出版信息

BMC Biol. 2011 Dec 28;9:87. doi: 10.1186/1741-7007-9-87.

Abstract

BACKGROUND

The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from the loosely associated commensals, often designated as secondary (S) symbionts, to obligate mutualists, called primary (P) symbionts. Determination of the evolutionary processes behind this phenomenon has long been hampered by the unreliability of phylogenetic reconstructions within this group of bacteria. The main reasons have been the absence of sufficient data, the highly derived nature of the symbiont genomes and lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to cluster as a monophyletic group. This state of phylogenetic uncertainty is now improving with an increasing number of complete bacterial genomes and development of new methods. In this study, we address the monophyly versus polyphyly of enterobacterial symbionts by exploring a multigene matrix within a complex phylogenetic framework.

RESULTS

We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 orthologous genes with no missing data) and analyzed both nucleic and amino acid data sets using several probabilistic methods. We particularly focused on the long-branch attraction-reducing methods, such as a nucleotide and amino acid data recoding and exclusion (including our new approach and slow-fast analysis), taxa exclusion and usage of complex evolutionary models, such as nonhomogeneous model and models accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our data strongly suggest independent origins of four symbiotic clusters; the first is formed by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the Erwinia and Pantoea clade.

CONCLUSIONS

The results of this study confirm the efficiency of several artifact-reducing methods and strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. Interestingly, the model species of symbiotic bacteria research, Buchnera and Wigglesworthia, originated from closely related, but different, ancestors. The possible origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are suggested, as well as the role of facultative secondary symbionts as a source of bacteria that can gradually become obligate maternally transferred symbionts.

摘要

背景

肠杆菌科的细菌家族产生了多种共生形式,从松散相关的共生体(通常称为次要(S)共生体)到专性互惠共生体(称为主要(P)共生体)。长期以来,由于该细菌群中系统发育重建的不可靠性,一直阻碍着对这一现象背后的进化过程的确定。主要原因是缺乏足够的数据、共生体基因组的高度衍生性质以及缺乏适当的系统发育方法。由于其 DNA 的极其异常性质,肠杆菌科内的共生谱系形成长枝,并且往往作为单系群聚类。随着越来越多的完整细菌基因组的出现和新方法的发展,这种系统发育不确定性的状态正在得到改善。在这项研究中,我们通过在复杂的系统发育框架内探索多基因矩阵来解决肠杆菌共生体的单系性与多系性问题。

结果

我们组装了迄今为止肠杆菌科最丰富的分类群抽样(50 个分类群,69 个具有完整数据的直系同源基因),并使用几种概率方法分析了核酸和氨基酸数据集。我们特别关注长枝吸引减少方法,例如核苷酸和氨基酸数据重编码和排除(包括我们的新方法和慢快分析)、分类群排除以及使用复杂的进化模型,例如非均匀模型和考虑蛋白质进化的特定部位特征的模型(CAT 和 CAT+GTR)。我们的数据强烈表明四个共生簇具有独立的起源;第一个由 Hamiltonella 和 Regiella(S-共生体)组成,作为 Yersinia 的姐妹群;第二个由 Arsenophonus 和 Riesia(S-和 P-共生体)组成,作为 Proteus 的姐妹群;第三个由 Sodalis、Baumannia、Blochmannia 和 Wigglesworthia(S-和 P-共生体)组成,作为 Pectobacterium 和 Dickeya 类群的姐妹或并系群;最后,Buchnera 物种和 Ishikawaella(P-共生体)与 Erwinia 和 Pantoea 类群聚类。

结论

本研究的结果证实了几种减少假象的方法的有效性,并强烈指向肠杆菌科内 P-共生体的多系性。有趣的是,共生细菌研究的模式物种 Buchnera 和 Wigglesworthia 起源于密切相关但不同的祖先。建议从肠道相关或致病性细菌中获得细胞内共生细菌的可能起源,以及兼性次要共生体作为可逐渐成为专性母系转移共生体的细菌的来源的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b385/3271043/2d521f81ea35/1741-7007-9-87-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验