Suppr超能文献

脯氨酸代谢中的基质定向。

Substrate channeling in proline metabolism.

机构信息

Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

出版信息

Front Biosci (Landmark Ed). 2012 Jan 1;17(1):375-88. doi: 10.2741/3932.

Abstract

Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism.

摘要

脯氨酸代谢是一条重要的途径,与多种细胞功能相关,如氧化还原平衡、细胞凋亡和细胞存活。不同研究组的结果表明,脯氨酸代谢中间产物的基质通道化可能是一个关键机制。其中一个中间产物是吡咯啉-5-羧酸(P5C),它在水解后会打开谷氨酸半醛(GSA)。最近的结构和动力学证据表明,在脯氨酸分解代谢途径中,脯氨酸脱氢酶和多功能脯氨酸利用 A(PutA)的 P5C 脱氢酶活性位点之间存在 P5C/GSA 的基质通道化。推测 PutA 中的基质通道化有助于促进 P5C 水解为 GSA,这在生理 pH 下是不利的。第二个中间产物γ-谷氨酰磷酸是脯氨酸生物合成途径的一部分,极不稳定。γ-谷氨酰磷酸的基质通道化被认为是保护它免受大量溶剂影响所必需的。由于 P5C/GSA 的不利平衡和γ-谷氨酰磷酸的反应性,基质通道化可能提高了脯氨酸代谢的效率。在这里,我们概述了测试基质通道化的一般策略,并回顾了脯氨酸代谢中通道化的证据。

相似文献

1
Substrate channeling in proline metabolism.
Front Biosci (Landmark Ed). 2012 Jan 1;17(1):375-88. doi: 10.2741/3932.
3
Structure, function, and mechanism of proline utilization A (PutA).
Arch Biochem Biophys. 2017 Oct 15;632:142-157. doi: 10.1016/j.abb.2017.07.005. Epub 2017 Jul 14.
5
Kinetic and structural characterization of tunnel-perturbing mutants in Bradyrhizobium japonicum proline utilization A.
Biochemistry. 2014 Aug 12;53(31):5150-61. doi: 10.1021/bi5007404. Epub 2014 Jul 30.
6
Unique structural features and sequence motifs of proline utilization A (PutA).
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):556-68. doi: 10.2741/3943.
7
The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel.
Arch Biochem Biophys. 1998 Jun 15;354(2):281-7. doi: 10.1006/abbi.1998.0697.
9
Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum.
Appl Environ Microbiol. 1996 Jan;62(1):221-9. doi: 10.1128/aem.62.1.221-229.1996.
10
Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
J Biol Chem. 2009 Sep 25;284(39):26482-92. doi: 10.1074/jbc.M109.009340. Epub 2009 Jul 27.

引用本文的文献

2
Challenging a decades-old paradigm: ProB and ProA do not channel the unstable intermediate in proline synthesis after all.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2413673121. doi: 10.1073/pnas.2413673121. Epub 2024 Nov 8.
5
Dynamic Arabidopsis P5CS filament facilitates substrate channelling.
Nat Plants. 2024 Jun;10(6):880-889. doi: 10.1038/s41477-024-01697-w. Epub 2024 May 13.
6
Sweet Potato as a Key Crop for Food Security under the Conditions of Global Climate Change: A Review.
Plants (Basel). 2023 Jun 30;12(13):2516. doi: 10.3390/plants12132516.
7
Celastrol Combats Methicillin-Resistant Staphylococcus aureus by Targeting Δ -Pyrroline-5-Carboxylate Dehydrogenase.
Adv Sci (Weinh). 2023 Sep;10(25):e2302459. doi: 10.1002/advs.202302459. Epub 2023 Jun 28.
10
Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA).
Arch Biochem Biophys. 2021 Nov 15;712:109025. doi: 10.1016/j.abb.2021.109025. Epub 2021 Sep 15.

本文引用的文献

1
Proline metabolism and microenvironmental stress.
Annu Rev Nutr. 2010 Aug 21;30:441-63. doi: 10.1146/annurev.nutr.012809.104638.
2
Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2878-83. doi: 10.1073/pnas.0906101107. Epub 2010 Feb 1.
4
Proline: a multifunctional amino acid.
Trends Plant Sci. 2010 Feb;15(2):89-97. doi: 10.1016/j.tplants.2009.11.009. Epub 2009 Dec 23.
6
Mutations in PYCR1 cause cutis laxa with progeroid features.
Nat Genet. 2009 Sep;41(9):1016-21. doi: 10.1038/ng.413. Epub 2009 Aug 2.
7
8
Inborn errors of proline metabolism.
J Nutr. 2008 Oct;138(10):2016S-2020S. doi: 10.1093/jn/138.10.2016S.
9
Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex.
Proteins. 2009 Apr;75(1):12-27. doi: 10.1002/prot.22217.
10
Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
J Mol Biol. 2008 Aug 1;381(1):174-88. doi: 10.1016/j.jmb.2008.05.084. Epub 2008 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验