Li Wenting, Wilkes Rebecca A, Aristilde Ludmilla
Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States.
Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States.
ACS Environ Au. 2021 Nov 18;2(2):136-149. doi: 10.1021/acsenvironau.1c00030. eCollection 2022 Mar 16.
Plant growth-promoting rhizobacteria (PGPR) that colonize plant roots produce a variety of plant-beneficial compounds, including plant-growth regulators, metal-scavenging compounds, and antibiotics against plant pathogens. Adverse effects of phosphonate herbicides, the most extensively used herbicides, on the growth and metabolism of PGPR species have been widely reported. However, the potential consequence of these effects on the biosynthesis and secretion of PGPR-derived beneficial compounds still remains to be investigated. Here, using high-resolution mass spectrometry and a metabolomics approach, we investigated both the intracellular metabolome and the extracellular secretions of biomass-normalized metabolite levels in two PGPR species ( Pf-5, a Gram-negative bacterium; QM B1551, a Gram-positive bacterium) exposed to three common phosphonate herbicides (glyphosate, glufosinate, and fosamine; 0.1-1 mM) in either iron (Fe)-replete or Fe-deficient nutrient media. We quantified secreted auxin-type plant hormone compounds (phenylacetic acid and indole-3-acetic acid), iron-scavenging compounds or siderophores (pyoverdine and schizokinen), and antibiotics (2,4-diacetylphloroglucinol and pyoluteorin) produced by these PGPR species. The Fe-replete cells exposed to the phosphonate herbicides yielded up to a 25-fold increase in the production of both auxin and antibiotic compounds, indicating that herbicide exposure under Fe-replete conditions triggered metabolite secretions. However, the herbicide-exposed Fe-deficient cells exhibited a near 2-fold depletion in the secretion of these auxin and antibiotic compounds as well as a 77% decrease in siderophore production. Intracellular metabolomics analysis of the Fe-deficient cells further revealed metabolic perturbations in biosynthetic pathways consistent with the impaired production of the plant-beneficial compounds. Our findings implied that compromised cellular metabolism during nutrient deficiency may exacerbate the adverse effects of phosphonate herbicides on PGPR species.
定殖于植物根部的促植物生长根际细菌(PGPR)能产生多种对植物有益的化合物,包括植物生长调节剂、金属螯合化合物以及抗植物病原体的抗生素。膦酸酯类除草剂是使用最为广泛的除草剂,其对PGPR物种生长和代谢的不利影响已被广泛报道。然而,这些影响对PGPR衍生的有益化合物生物合成和分泌的潜在后果仍有待研究。在此,我们使用高分辨率质谱和代谢组学方法,研究了两种PGPR物种(革兰氏阴性菌Pf-5和革兰氏阳性菌QM B1551)在铁(Fe)充足或铁缺乏的营养培养基中暴露于三种常见膦酸酯类除草剂(草甘膦、草铵膦和福美双;0.1 - 1 mM)时的细胞内代谢组和生物质标准化代谢物水平的细胞外分泌物。我们对这些PGPR物种产生的分泌型生长素类植物激素化合物(苯乙酸和吲哚 - 3 - 乙酸)、铁螯合化合物或铁载体(绿脓菌素和裂殖菌素)以及抗生素(2,4 - 二乙酰基间苯三酚和吡咯菌素)进行了定量。暴露于膦酸酯类除草剂的铁充足细胞产生的生长素和抗生素化合物产量增加了25倍,这表明在铁充足条件下接触除草剂会引发代谢物分泌。然而,暴露于除草剂的缺铁细胞这些生长素和抗生素化合物的分泌减少了近2倍,铁载体产量也减少了77%。对缺铁细胞的细胞内代谢组学分析进一步揭示了生物合成途径中的代谢紊乱,这与植物有益化合物产量受损一致。我们的研究结果表明,营养缺乏期间细胞代谢受损可能会加剧膦酸酯类除草剂对PGPR物种的不利影响。