Suppr超能文献

姬松茸核糖体生物合成α-鹅膏蕈碱。

Ribosomal biosynthesis of α-amanitin in Galerina marginata.

机构信息

Department of Energy Plant Research Laboratory, Michigan State University, E. Lansing, MI 48824, United States.

出版信息

Fungal Genet Biol. 2012 Feb;49(2):123-9. doi: 10.1016/j.fgb.2011.12.005. Epub 2011 Dec 21.

Abstract

Amatoxins, including α-amanitin, are bicyclic octapeptides found in mushrooms (Agaricomycetes, Agaricales) of certain species in the genera Amanita, Galerina, Lepiota, and Conocybe. Amatoxins and the chemically similar phallotoxins are synthesized on ribosomes in Amanita bisporigera, Amanita phalloides, and Amanita ocreata. In order to determine if amatoxins are synthesized by a similar mechanism in another, distantly related mushroom, we obtained genome survey sequence data from a monokaryotic isolate of Galerinamarginata, which produces α-amanitin. The genome of G. marginata contains two copies of the α-amanitin gene (GmAMA1-1 and GmAMA1-2). The α-amanitin proprotein sequences of G. marginata (35 amino acids) are highly divergent from AMA1 of A. bisporigera except for the toxin region itself (IWGIGCNP in single-letter amino acid code) and the amino acids immediately upstream (N[A/S]TRLP). G. marginata does not contain any related toxin-encoding sequences besides GmAMA1-1 and GmAMA1-2. DNA from two other α-amanitin-producing isolates of Galerina (G. badipes and G. venenata) hybridized to GmAMA1, whereas DNA from the toxin non-producing species Galerinahybrida did not. Expression of the GmAMA1 genes was induced by growth on low carbon. RNASeq evidence indicates that both copies of GmAMA1 are expressed approximately equally. A prolyl oligopeptidase (POP) is strongly implicated in processing of the cyclic peptide toxins of A. bisporigera and Conocybe apala. G. marginata has two predicted POP genes; one, like AbPOPB of A. bisporigera, is present only in the toxin-producing isolates of Galerina and the other, like AbPOPA of A. bisporigera, is present in all species. Our results indicate that G.marginata biosynthesizes amatoxins on ribosomes by a pathway similar to Amanita species, involving a genetically encoded proprotein of 35 amino acids that is post-translationally processed by a POP. However, due to the high degree of divergence, the evolutionary relationship between AMA1 in the genera Amanita and Galerina is unclear.

摘要

α-鹅膏毒肽等鹅膏毒素是一类双环八肽,存在于某些鹅膏菌属(担子菌门,伞菌目)物种的蘑菇中,如鹅膏菌属、鹅膏菌属、鳞柄白鹅膏菌属和丝盖伞属。α-鹅膏毒肽和结构类似的鬼笔毒肽在双孢鹅膏菌、毒鹅膏和奥来丝盖伞中通过核糖体合成。为了确定鹅膏毒素是否通过类似的机制在另一种亲缘关系较远的蘑菇中合成,我们从产生α-鹅膏毒肽的丝盖伞属单核分离株中获得了基因组调查序列数据。丝盖伞属含有两个α-鹅膏毒肽基因(GmAMA1-1 和 GmAMA1-2)。丝盖伞属的α-鹅膏毒肽前蛋白序列(35 个氨基酸)与双孢鹅膏菌的 AMA1 高度不同,除了毒素区本身(单字母氨基酸代码中的 IWGIGCNP)和上游的氨基酸(N[A/S]TRLP)。除了 GmAMA1-1 和 GmAMA1-2 之外,丝盖伞属没有任何相关的毒素编码序列。来自其他两个产生α-鹅膏毒肽的丝盖伞属分离株(丝盖伞属和丝盖伞属)的 DNA 与 GmAMA1 杂交,而不产生毒素的丝盖伞属的 DNA 则没有。在低碳条件下生长会诱导 GmAMA1 基因的表达。RNA-Seq 证据表明,GmAMA1 的两个拷贝的表达水平大致相等。一种脯氨酰寡肽酶(POP)强烈参与了双孢鹅膏菌和丝盖伞属的环肽毒素的加工。丝盖伞属有两个预测的 POP 基因;一个与双孢鹅膏菌的 AbPOPB 一样,只存在于丝盖伞属的产毒分离株中,另一个与双孢鹅膏菌的 AbPOPA 一样,存在于所有物种中。我们的结果表明,丝盖伞属通过一种类似于鹅膏菌属的途径在核糖体上生物合成鹅膏毒素,涉及一个 35 个氨基酸的遗传编码前蛋白,该蛋白通过 POP 进行翻译后加工。然而,由于高度的差异,鹅膏菌属和丝盖伞属中的 AMA1 之间的进化关系尚不清楚。

相似文献

1
Ribosomal biosynthesis of α-amanitin in Galerina marginata.
Fungal Genet Biol. 2012 Feb;49(2):123-9. doi: 10.1016/j.fgb.2011.12.005. Epub 2011 Dec 21.
3
Peptide macrocyclization catalyzed by a prolyl oligopeptidase involved in α-amanitin biosynthesis.
Chem Biol. 2014 Dec 18;21(12):1610-7. doi: 10.1016/j.chembiol.2014.10.015. Epub 2014 Dec 4.
4
Gene family encoding the major toxins of lethal Amanita mushrooms.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19097-101. doi: 10.1073/pnas.0707340104. Epub 2007 Nov 19.
6
Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms.
Biopolymers. 2010;94(5):659-64. doi: 10.1002/bip.21416.
7
Colocalization of amanitin and a candidate toxin-processing prolyl oligopeptidase in Amanita basidiocarps.
Eukaryot Cell. 2010 Dec;9(12):1891-900. doi: 10.1128/EC.00161-10. Epub 2010 Oct 1.
9
Amatoxins in wood-rotting Galerina marginata.
Mycologia. 2004 Jul-Aug;96(4):720-9. doi: 10.1080/15572536.2005.11832920.
10
Processing of the phalloidin proprotein by prolyl oligopeptidase from the mushroom Conocybe albipes.
J Biol Chem. 2009 Jul 3;284(27):18070-7. doi: 10.1074/jbc.M109.006460. Epub 2009 Apr 23.

引用本文的文献

1
Lessons on fruiting body morphogenesis from genomes and transcriptomes of .
Stud Mycol. 2023 Jul;104:1-85. doi: 10.3114/sim.2022.104.01. Epub 2023 Jan 31.
3
Subcellular localization of fungal specialized metabolites.
Fungal Biol Biotechnol. 2022 May 25;9(1):11. doi: 10.1186/s40694-022-00140-z.
4
Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms.
Proc Natl Acad Sci U S A. 2022 May 17;119(20):e2201113119. doi: 10.1073/pnas.2201113119. Epub 2022 May 9.
5
Differential Expression of Amanitin Biosynthetic Genes and Novel Cyclic Peptides in .
J Fungi (Basel). 2021 May 14;7(5):384. doi: 10.3390/jof7050384.
6
Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs).
J Ind Microbiol Biotechnol. 2021 Jun 4;48(3-4). doi: 10.1093/jimb/kuab005.
7
Novel Cyclic Peptides from Lethal Mushrooms through a Genome-Guided Approach.
J Fungi (Basel). 2021 Mar 11;7(3):204. doi: 10.3390/jof7030204.
8
Phylogenetic analysis of the distribution of deadly amatoxins among the little brown mushrooms of the genus Galerina.
PLoS One. 2021 Feb 10;16(2):e0246575. doi: 10.1371/journal.pone.0246575. eCollection 2021.
10
Genome Assembly and Pathway Analysis of Edible Mushroom Agrocybe cylindracea.
Genomics Proteomics Bioinformatics. 2020 Jun;18(3):341-351. doi: 10.1016/j.gpb.2018.10.009. Epub 2020 Jun 17.

本文引用的文献

1
Linking chemistry and genetics in the growing cyanobactin natural products family.
Chem Biol. 2011 Apr 22;18(4):508-19. doi: 10.1016/j.chembiol.2011.01.019.
2
Amatoxins in wood-rotting Galerina marginata.
Mycologia. 2004 Jul-Aug;96(4):720-9. doi: 10.1080/15572536.2005.11832920.
3
Colocalization of amanitin and a candidate toxin-processing prolyl oligopeptidase in Amanita basidiocarps.
Eukaryot Cell. 2010 Dec;9(12):1891-900. doi: 10.1128/EC.00161-10. Epub 2010 Oct 1.
4
Thiazolyl peptide antibiotic biosynthesis: a cascade of post-translational modifications on ribosomal nascent proteins.
J Biol Chem. 2010 Sep 3;285(36):27525-31. doi: 10.1074/jbc.R110.135970. Epub 2010 Jun 3.
5
Follow the leader: the use of leader peptides to guide natural product biosynthesis.
Nat Chem Biol. 2010 Jan;6(1):9-18. doi: 10.1038/nchembio.286.
6
Processing of the phalloidin proprotein by prolyl oligopeptidase from the mushroom Conocybe albipes.
J Biol Chem. 2009 Jul 3;284(27):18070-7. doi: 10.1074/jbc.M109.006460. Epub 2009 Apr 23.
7
Conus venoms - a rich source of peptide-based therapeutics.
Curr Pharm Des. 2008;14(24):2462-79. doi: 10.2174/138161208785777469.
8
Structure, function and biological relevance of prolyl oligopeptidase.
Curr Protein Pept Sci. 2008 Feb;9(1):96-107. doi: 10.2174/138920308783565723.
9
Gene family encoding the major toxins of lethal Amanita mushrooms.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19097-101. doi: 10.1073/pnas.0707340104. Epub 2007 Nov 19.
10
Tryptathionine bridges in peptide synthesis.
Biopolymers. 2007;88(5):714-24. doi: 10.1002/bip.20807.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验