Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin, Madison, WI, USA.
USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA.
ISME J. 2023 Aug;17(8):1236-1246. doi: 10.1038/s41396-023-01432-x. Epub 2023 May 23.
The poisonous European mushroom Amanita phalloides (the "death cap") is invading California. Whether the death caps' toxic secondary metabolites are evolving as it invades is unknown. We developed a bioinformatic pipeline to identify the MSDIN genes underpinning toxicity and probed 88 death cap genomes from an invasive Californian population and from the European range, discovering a previously unsuspected diversity of MSDINs made up of both core and accessory elements. Each death cap individual possesses a unique suite of MSDINs, and toxin genes are significantly differentiated between Californian and European samples. MSDIN genes are maintained by strong natural selection, and chemical profiling confirms MSDIN genes are expressed and result in distinct phenotypes; our chemical profiling also identified a new MSDIN peptide. Toxin genes are physically clustered within genomes. We contextualize our discoveries by probing for MSDINs in genomes from across the order Agaricales, revealing MSDIN diversity originated in independent gene family expansions among genera. We also report the discovery of an MSDIN in an Amanita outside the "lethal Amanitas" clade. Finally, the identification of an MSDIN gene and its associated processing gene (POPB) in Clavaria fumosa suggest the origin of MSDINs is older than previously suspected. The dynamic evolution of MSDINs underscores their potential to mediate ecological interactions, implicating MSDINs in the ongoing invasion. Our data change the understanding of the evolutionary history of poisonous mushrooms, emphasizing striking parallels to convergently evolved animal toxins. Our pipeline provides a roadmap for exploring secondary metabolites in other basidiomycetes and will enable drug prospecting.
毒蕈欧洲鹅膏菌(“死亡帽”)正在入侵加利福尼亚。其毒性次生代谢物是否会随着入侵而进化尚不清楚。我们开发了一种生物信息学管道来鉴定毒性所必需的 MSDIN 基因,并对来自加利福尼亚入侵种群和欧洲范围内的 88 个死亡帽基因组进行了探测,发现了以前未被怀疑的 MSDIN 多样性,由核心和辅助元件组成。每个死亡帽个体都拥有独特的 MSDIN 套件,毒素基因在加利福尼亚和欧洲样本之间存在显著差异。MSDIN 基因受到强烈的自然选择的保护,化学分析证实 MSDIN 基因表达并导致独特的表型;我们的化学分析还鉴定了一种新的 MSDIN 肽。毒素基因在基因组内物理聚集。我们通过探测整个伞菌目基因组中的 MSDIN 来探讨我们的发现,揭示了 MSDIN 多样性起源于属间独立的基因家族扩张。我们还报告了在“致命鹅膏菌”进化枝之外的鹅膏菌中发现 MSDIN 的情况。最后,在 Clavaria fumosa 中发现 MSDIN 基因及其相关的加工基因(POPB)表明 MSDIN 起源比以前怀疑的要早。MSDIN 的动态进化突出了其介导生态相互作用的潜力,暗示 MSDIN 参与了正在进行的入侵。我们的数据改变了对毒蕈进化历史的认识,强调了与趋同进化的动物毒素惊人的相似之处。我们的管道为探索其他担子菌中的次生代谢物提供了路线图,并将能够进行药物探索。