Suppr超能文献

药代动力学研究设计中优化采样时间前后分布的评估。

Evaluation of the pre-posterior distribution of optimized sampling times for the design of pharmacokinetic studies.

作者信息

Duffull Stephen B, Graham Gordon, Mengersen Kerrie, Eccleston John

机构信息

School of Pharmacy, University of Otago, Dunedin, New Zealand.

出版信息

J Biopharm Stat. 2012;22(1):16-29. doi: 10.1080/10543406.2010.500065.

Abstract

Information theoretic methods are often used to design studies that aim to learn about pharmacokinetic and linked pharmacokinetic-pharmacodynamic systems. These design techniques, such as D-optimality, provide the optimum experimental conditions. The performance of the optimum design will depend on the ability of the investigator to comply with the proposed study conditions. However, in clinical settings it is not possible to comply exactly with the optimum design and hence some degree of unplanned suboptimality occurs due to error in the execution of the study. In addition, due to the nonlinear relationship of the parameters of these models to the data, the designs are also locally dependent on an arbitrary choice of a nominal set of parameter values. A design that is robust to both study conditions and uncertainty in the nominal set of parameter values is likely to be of use clinically. We propose an adaptive design strategy to account for both execution error and uncertainty in the parameter values. In this study we investigate designs for a one-compartment first-order pharmacokinetic model. We do this in a Bayesian framework using Markov-chain Monte Carlo (MCMC) methods. We consider log-normal prior distributions on the parameters and investigate several prior distributions on the sampling times. An adaptive design was used to find the sampling window for the current sampling time conditional on the actual times of all previous samples.

摘要

信息论方法常用于设计旨在了解药代动力学以及相关药代动力学 - 药效动力学系统的研究。这些设计技术,如D - 最优性,可提供最优实验条件。最优设计的性能将取决于研究者遵守所提议研究条件的能力。然而,在临床环境中,不可能完全遵守最优设计,因此由于研究执行中的误差会出现一定程度的意外次优情况。此外,由于这些模型的参数与数据之间存在非线性关系,设计还局部依赖于一组名义参数值的任意选择。一种对研究条件和名义参数值集的不确定性均具有稳健性的设计在临床上可能会有用。我们提出一种自适应设计策略,以兼顾执行误差和参数值的不确定性。在本研究中,我们研究单室一级药代动力学模型的设计。我们在贝叶斯框架下使用马尔可夫链蒙特卡罗(MCMC)方法来进行研究。我们考虑参数上的对数正态先验分布,并研究采样时间上的几种先验分布。使用自适应设计根据所有先前样本的实际时间来找到当前采样时间的采样窗口。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验