INSERM, IAME, UMR 1137, Faculté de médecine Paris Diderot Paris 7 - site Bichat, 16 rue Henri Huchard, 75018, Paris, France,
AAPS J. 2015 May;17(3):597-608. doi: 10.1208/s12248-015-9726-8. Epub 2015 Feb 20.
Genetic data is now collected in many clinical trials, especially in population pharmacokinetic studies. There is no consensus on methods to test the association between pharmacokinetics and genetic covariates. We performed a simulation study inspired by real clinical trials, using the pharmacokinetics (PK) of a compound under development having a nonlinear bioavailability along with genotypes for 176 single nucleotide polymorphisms (SNPs). Scenarios included 78 subjects extensively sampled (16 observations per subject) to simulate a phase I study, or 384 subjects with the same rich design. Under the alternative hypothesis (H1), six SNPs were drawn randomly to affect the log-clearance under an additive linear model. For each scenario, 200 PK data sets were simulated under the null hypothesis (no gene effect) and H1. We compared 16 combinations of four association tests, a stepwise procedure and three penalised regressions (ridge regression, Lasso, HyperLasso), applied to four pharmacokinetic phenotypes, two observed concentrations, area under the curve estimated by noncompartmental analysis and model-based clearance. The different combinations were compared in terms of true and false positives and probability to detect the genetic effects. In presence of nonlinearity and/or variability in bioavailability, model-based phenotype allowed a higher probability to detect the SNPs than other phenotypes. In a realistic setting with a limited number of subjects, all methods showed a low ability to detect genetic effects. Ridge regression had the best probability to detect SNPs, but also a higher number of false positives. No association test showed a much higher power than the others.
遗传数据现在在许多临床试验中被收集,特别是在群体药代动力学研究中。目前还没有关于测试药代动力学与遗传协变量之间关联的方法的共识。我们进行了一项受真实临床试验启发的模拟研究,使用正在开发的具有非线性生物利用度的化合物的药代动力学(PK)以及 176 个单核苷酸多态性(SNP)的基因型。方案包括 78 名广泛采样的受试者(每个受试者 16 个观察值),以模拟 I 期研究,或 384 名具有相同丰富设计的受试者。在替代假设(H1)下,随机抽取六个 SNP 来影响加性线性模型下的对数清除率。对于每种情况,在零假设(无基因效应)和 H1 下模拟 200 个 PK 数据集。我们比较了四种关联测试(逐步程序和三种惩罚回归(岭回归、lasso、HyperLasso))的 16 种组合,应用于四种药代动力学表型,两种观察浓度,非房室分析估计的曲线下面积和基于模型的清除率。不同的组合在真阳性和假阳性以及检测遗传效应的概率方面进行了比较。在存在非线性和/或生物利用度变异性的情况下,基于模型的表型比其他表型更有可能检测到 SNP。在受试者数量有限的现实情况下,所有方法都显示出检测遗传效应的能力较低。岭回归具有检测 SNP 的最佳概率,但也有更高的假阳性。没有一种关联测试显示出比其他测试更高的功效。