文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

秀丽隐杆线虫中的甲羟戊酸途径。

The mevalonate pathway in C. elegans.

机构信息

Department of Cell and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden.

出版信息

Lipids Health Dis. 2011 Dec 28;10:243. doi: 10.1186/1476-511X-10-243.


DOI:10.1186/1476-511X-10-243
PMID:22204706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3274489/
Abstract

The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans) is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

摘要

人体内的甲羟戊酸途径负责合成胆固醇和其他重要生物分子,如辅酶 Q、多萜醇和异戊二烯。这些分子在细胞中参与从信号转导到膜完整性、蛋白质 prenylation 和糖基化以及能量稳态等各种功能。该途径由一个主干和几个分支组成,这些分支合成不同的生物分子。目前,我们对甲羟戊酸途径的了解主要集中在胆固醇合成分支上,该分支是降胆固醇他汀类药物的作用靶点;而对非胆固醇相关分支的功能和调节了解较少。为了研究它们,我们需要一个能够单独或分组调节这些代谢分支的生物系统。秀丽隐杆线虫(C. elegans)是研究这些非胆固醇分支的一种很有前途的模型,因为它的甲羟戊酸途径与人类非常相似,除了没有胆固醇合成分支。秀丽隐杆线虫的简单遗传组成和易于处理性使得识别和操纵甲羟戊酸途径的关键遗传成分相对容易,并评估干扰其活性的后果。这种通用的实验方法应该会为甲羟戊酸途径中非胆固醇部分的生理作用提供新的见解。本文综述了与 C. elegans 中甲羟戊酸途径相关的最新知识,以及它作为研究该途径中非胆固醇功能的模型生物的可能应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/ab5f53e1095f/1476-511X-10-243-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/d5f6695d2f20/1476-511X-10-243-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/68562b299e6a/1476-511X-10-243-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/ab5f53e1095f/1476-511X-10-243-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/d5f6695d2f20/1476-511X-10-243-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/68562b299e6a/1476-511X-10-243-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d6/3274489/ab5f53e1095f/1476-511X-10-243-3.jpg

相似文献

[1]
The mevalonate pathway in C. elegans.

Lipids Health Dis. 2011-12-28

[2]
The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway.

Proc Natl Acad Sci U S A. 2013-3-25

[3]
The UPR Protects from Mitochondrial Dysfunction by Upregulating Specific Enzymes of the Mevalonate Pathway.

Genetics. 2018-3-29

[4]
Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging.

Proc Natl Acad Sci U S A. 2014-9-16

[5]
The mevalonate pathway regulates microRNA activity in Caenorhabditis elegans.

Proc Natl Acad Sci U S A. 2012-3-6

[6]
Conserved statin-mediated activation of the p38-MAPK pathway protects Caenorhabditis elegans from the cholesterol-independent effects of statins.

Mol Metab. 2020-9

[7]
A Mutation in Caenorhabditis elegans NDUF-7 Activates the Mitochondrial Stress Response and Prolongs Lifespan via ROS and CED-4.

G3 (Bethesda). 2015-6-1

[8]
Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

PLoS One. 2014-6-11

[9]
Decoding the crosstalk between mevalonate metabolism and T cell function.

Immunol Rev. 2023-8

[10]
Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans.

Proc Natl Acad Sci U S A. 2009-10-27

引用本文的文献

[1]
Obesity Affects IVF Outcomes and Mevalonic Acid Rescues the Side Effects of Statins on Follicle Growth.

FASEB J. 2025-7-15

[2]
Hoi1 targets the yeast BLTP2 protein to ER-PM contact sites to regulate lipid homeostasis.

bioRxiv. 2025-2-19

[3]
High-throughput tracking enables systematic phenotyping and drug repurposing in disease models.

Elife. 2025-1-8

[4]
Host-microbe interactions rewire metabolism in a C. elegans model of leucine breakdown deficiency.

Nat Metab. 2024-8

[5]
De novo lipid synthesis and polarized prenylation drive cell invasion through basement membrane.

J Cell Biol. 2024-10-7

[6]
Sulfur, sterol and trehalose metabolism in the deep-sea hydrocarbon seep tubeworm Lamellibrachia luymesi.

BMC Genomics. 2023-4-5

[7]
Neurobiological Basis of Aversion-Resistant Ethanol Seeking in .

Metabolites. 2022-12-31

[8]
Deciphering the mechanism of anhydrobiosis in the entomopathogenic nematode Heterorhabditis indica through comparative transcriptomics.

PLoS One. 2022

[9]
Transcriptional response of Meloidogyne incognita to non-fumigant nematicides.

Sci Rep. 2022-6-13

[10]
Intracellular lipid surveillance by small G protein geranylgeranylation.

Nature. 2022-5

本文引用的文献

[1]
Alzheimer disease: statins in the treatment of Alzheimer disease.

Nat Rev Neurol. 2011-10-18

[2]
Statins exhibit anticancer effects through modifications of the pAkt signaling pathway.

Int J Oncol. 2011-10-6

[3]
Statin myopathy: a lipid clinic experience on the tolerability of statin rechallenge.

Cardiovasc Ther. 2011-4-1

[4]
Role of Rho GTPases and their regulators in cancer progression.

Front Biosci (Landmark Ed). 2011-6-1

[5]
Polyisoprenoids - Secondary metabolites or physiologically important superlipids?

Biochem Biophys Res Commun. 2011-3-16

[6]
Mechanisms for the anti-inflammatory effects of statins.

Curr Opin Lipidol. 2011-6

[7]
Sterol metabolism in the nematodeCaenorhabditis elegans.

Lipids. 1984-7

[8]
Reversal of age-dependent nuclear morphology by inhibition of prenylation does not affect lifespan in Caenorhabditis elegans.

Nucleus. 2010-8-5

[9]
Biochemical and molecular mechanisms of action of bisphosphonates.

Bone. 2010-11-26

[10]
Enzymes of the mevalonate pathway of isoprenoid biosynthesis.

Arch Biochem Biophys. 2010-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索