Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 1-235A&B, Cambridge, MA, USA.
Matrix Biol. 2012 Mar;31(2):141-9. doi: 10.1016/j.matbio.2011.11.005. Epub 2011 Dec 21.
Collagen is the prime construction material in vertebrate biology, determining the mechanical behavior of connective tissues such as tendon, bone and skin. Despite extensive efforts in the investigation of the origin of collagen unique mechanical properties, a deep understanding of the relationship between molecular structure and mechanical properties remains elusive, hindered by the complex hierarchical structure of collagen-based tissues. In particular, although extensive studies of viscoelastic properties have been pursued at the macroscopic (fiber/tissue) level, fewer investigations have been performed at the smaller scales, including in particular collagen molecules and fibrils. These scales are, however, important for a complete understanding of the role of collagen as an important constituent in the extracellular matrix. Here, using an atomistic modeling approach, we perform in silico creep tests of a collagen-like peptide, monitoring the strain-time response for different values of applied external load. The results show that individual collagen molecules exhibit a nonlinear viscoelastic behavior, with a Young's modulus increasing from 6 to 16GPa (for strains up to 20%), a viscosity of 3.84.±0.38Pa·s, and a relaxation time in the range of 0.24-0.64ns. The single molecule viscosity, for the first time reported here, is several orders of magnitude lower than the viscosity found for larger-scale single collagen fibrils, suggesting that the viscous behavior of collagen fibrils and fibers involves additional mechanisms, such as molecular sliding between collagen molecules within the fibril or the effect of relaxation of larger volumes of solvent. Based on our molecular modeling results we propose a simple structural model that describes collagen tissue as a hierarchical structure, providing a bottom-up description of elastic and viscous properties form the properties of the tissue basic building blocks.
胶原蛋白是脊椎动物生物学中的主要结构材料,决定了肌腱、骨骼和皮肤等结缔组织的力学行为。尽管在研究胶原蛋白独特力学性能的起源方面已经做出了广泛的努力,但由于基于胶原蛋白的组织具有复杂的层次结构,因此对分子结构与力学性能之间关系的深入理解仍然难以捉摸。特别是,尽管已经在宏观(纤维/组织)水平上对粘弹性进行了广泛的研究,但在较小的尺度上(包括特别是胶原蛋白分子和原纤维)进行的研究较少。然而,这些尺度对于全面了解胶原蛋白作为细胞外基质的重要组成部分的作用是重要的。在这里,我们使用原子建模方法对类似胶原蛋白的肽进行了在体蠕变测试,监测了不同外部施加负载下的应变-时间响应。结果表明,单个胶原蛋白分子表现出非线性粘弹性行为,杨氏模量从 6 到 16GPa(应变高达 20%)增加,粘度为 3.84.±0.38Pa·s,弛豫时间在 0.24-0.64ns 范围内。这里首次报道的单分子粘度比在较大规模的单胶原蛋白原纤维中发现的粘度低几个数量级,这表明胶原蛋白原纤维和纤维的粘性行为涉及其他机制,例如原纤维内胶原蛋白分子之间的分子滑动或更大体积溶剂的松弛效应。基于我们的分子建模结果,我们提出了一个简单的结构模型,将胶原蛋白组织描述为一种层次结构,从组织基本构建块的性质提供了弹性和粘性性质的自下而上的描述。