Suppr超能文献

将胶原纤维降解建模为基质微结构的函数。

Modeling collagen fibril degradation as a function of matrix microarchitecture.

作者信息

Debnath B, Narasimhan B N, Fraley S I, Rangamani P

机构信息

Department of Mechanical and Aerospace Engineering, University of California San Diego, CA 92093, USA.

Department of Bioengineering, University of California San Diego, CA 92093, USA.

出版信息

bioRxiv. 2024 Aug 12:2024.08.10.607470. doi: 10.1101/2024.08.10.607470.

Abstract

Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability. , collagen matrices of the same concentration but different microarchitectures also vary in degradation rate. How do different microarchitectures affect matrix degradation? To answer this question, we developed a computational model of collagen degradation. We first developed a lattice model that describes collagen degradation at the scale of a single fibril. We then extended this model to investigate the role of microarchitecture using Brownian dynamics simulation of enzymes in a multi-fibril three dimensional matrix to predict its degradability. Our simulations predict that the distribution of enzymes around the fibrils is non-uniform and depends on the microarchitecture of the matrix. This non-uniformity in enzyme distribution can lead to different extents of degradability for matrices of different microarchitectures. Our model predictions were tested using experiments with synthesized collagen gels of different microarchitectures. Experiments showed that indeed degradation of collagen depends on the matrix architecture and fibril thickness. In summary, our study shows that the microarchitecture of the collagen matrix is an important determinant of its degradability.

摘要

胶原酶解降解是组织重塑的一个基本过程。在发育、衰老和疾病过程中,胶原纤维网络的微观结构会发生变化。这种微观结构的变化通常伴随着基质降解性的改变。同样浓度但微观结构不同的胶原基质,其降解速率也有所不同。不同的微观结构如何影响基质降解?为了回答这个问题,我们开发了一个胶原降解的计算模型。我们首先开发了一个晶格模型,该模型描述了单个纤维尺度上的胶原降解。然后,我们扩展了这个模型,利用多纤维三维基质中酶的布朗动力学模拟来研究微观结构的作用,以预测其降解性。我们的模拟预测,纤维周围酶的分布是不均匀的,并且取决于基质的微观结构。这种酶分布的不均匀性会导致不同微观结构的基质具有不同程度的降解性。我们使用不同微观结构的合成胶原凝胶进行实验,对模型预测进行了验证。实验表明,胶原的降解确实取决于基质结构和纤维厚度。总之,我们的研究表明,胶原基质的微观结构是其降解性的一个重要决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fc6/11343160/0640948abed7/nihpp-2024.08.10.607470v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验