Suppr超能文献

利用 Illumina 深度测序技术区分丙型肝炎病毒变异体。

Use of illumina deep sequencing technology to differentiate hepatitis C virus variants.

机构信息

Division of Gastroenterology, Tohoku University of Medicine, Sendai, Japan.

出版信息

J Clin Microbiol. 2012 Mar;50(3):857-66. doi: 10.1128/JCM.05715-11. Epub 2012 Jan 11.

Abstract

Hepatitis C virus (HCV) is a positive-strand enveloped RNA virus that shows diverse viral populations even in one individual. Though Sanger sequencing has been used to determine viral sequences, deep sequencing technologies are much faster and can perform large-scale sequencing. We demonstrate the successful use of Illumina deep sequencing technology and subsequent analyses to determine the genetic variants and amino acid substitutions in both treatment-naïve (patient 1) and treatment-experienced (patient 7) isolates from HCV-infected patients. As a result, almost the full nucleotide sequence of HCV was detectable for patients 1 and 7. The reads were mapped to the HCV reference sequence. The coverage was 99.8% and the average depth was 69.5× for patient 7, with values of 99.4% (coverage) and 51.1× (average depth) for patient 1. In patient 7, amino acid (aa) 70 in the core region showed arginine, with methionine at aa 91, by Sanger sequencing. Major variants showed the same amino acid sequence, but minor variants were detectable in 18% (6/34 sequences) of sequences, with replacement of methionine by leucine at aa 91. In NS3, 8 amino acid positions showed mixed variants (T72T/I, K213K/R, G237G/S, P264P/S/A, S297S/A, A358A/T, S457S/C, and I615I/M) in patient 7. In patient 1, 3 amino acid positions showed mixed variants (L14L/F/V, S61S/A, and I586T/I). In conclusion, deep sequencing technologies are powerful tools for obtaining more profound insight into the dynamics of variants in the HCV quasispecies in human serum.

摘要

丙型肝炎病毒 (HCV) 是一种正链包膜 RNA 病毒,即使在一个个体中也表现出多样化的病毒群体。尽管桑格测序已被用于确定病毒序列,但深度测序技术更快,可以进行大规模测序。我们展示了 Illumina 深度测序技术的成功应用以及随后的分析,以确定来自 HCV 感染患者的未经治疗(患者 1)和经治疗(患者 7)分离物中的遗传变异和氨基酸取代。结果,患者 1 和 7 的 HCV 几乎全核苷酸序列均可检测到。读取映射到 HCV 参考序列。覆盖度为 99.8%,患者 7 的平均深度为 69.5×,患者 1 的覆盖度为 99.4%(覆盖度)和 51.1×(平均深度)。在患者 7 中,核心区域的氨基酸 (aa) 70 显示精氨酸,aa 91 为蛋氨酸,这是通过桑格测序得出的。主要变异显示出相同的氨基酸序列,但在 18%(6/34 个序列)的序列中可检测到次要变异,aa 91 处的蛋氨酸被亮氨酸取代。在 NS3 中,8 个氨基酸位置显示出混合变异(T72T/I、K213K/R、G237G/S、P264P/S/A、S297S/A、A358A/T、S457S/C 和 I615I/M),患者 7 中。在患者 1 中,3 个氨基酸位置显示出混合变异(L14L/F/V、S61S/A 和 I586T/I)。总之,深度测序技术是获得更深入了解人类血清中 HCV 准种变异动态的有力工具。

相似文献

1
Use of illumina deep sequencing technology to differentiate hepatitis C virus variants.
J Clin Microbiol. 2012 Mar;50(3):857-66. doi: 10.1128/JCM.05715-11. Epub 2012 Jan 11.
2
Pipeline for specific subtype amplification and drug resistance detection in hepatitis C virus.
BMC Infect Dis. 2018 Sep 3;18(1):446. doi: 10.1186/s12879-018-3356-6.
3
Performance assessment of the Illumina massively parallel sequencing platform for deep sequencing analysis of viral minority variants.
J Virol Methods. 2015 Sep 1;221:29-38. doi: 10.1016/j.jviromet.2015.04.022. Epub 2015 Apr 25.
4
Sequence analysis of NS3 protease gene in clinical strains of hepatitis C virus.
J Biol Regul Homeost Agents. 2003 Apr-Jun;17(2):198-204.
5
Conservation of hepatitis C virus nonstructural protein 3 amino acid sequence in viral isolates during liver transplantation.
J Viral Hepat. 2009 Oct;16(10):732-7. doi: 10.1111/j.1365-2893.2009.01125.x. Epub 2009 Mar 25.
9
Genomic characterization of hepatitis C virus transmitted founder variants with deep sequencing.
Infect Genet Evol. 2019 Jul;71:36-41. doi: 10.1016/j.meegid.2019.02.032. Epub 2019 Mar 8.
10
Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes.
J Clin Microbiol. 2016 Oct;54(10):2470-84. doi: 10.1128/JCM.00330-16. Epub 2016 Jul 6.

引用本文的文献

1
Managing Viral Emerging Infectious Diseases via Current and Future Molecular Diagnostics.
Diagnostics (Basel). 2023 Apr 15;13(8):1421. doi: 10.3390/diagnostics13081421.
2
Low-Bias RNA Sequencing of the HIV-2 Genome from Blood Plasma.
J Virol. 2018 Dec 10;93(1). doi: 10.1128/JVI.00677-18. Print 2019 Jan 1.
5
The new frontier of diagnostics: Molecular assays and their role in infection prevention and control.
Am J Infect Control. 2017 Feb 1;45(2):158-169. doi: 10.1016/j.ajic.2016.08.005.
6
Genomic Analysis of Viral Outbreaks.
Annu Rev Virol. 2016 Sep 29;3(1):173-195. doi: 10.1146/annurev-virology-110615-035747. Epub 2016 Aug 3.
8
Update on hepatitis B and C virus diagnosis.
World J Virol. 2015 Nov 12;4(4):323-42. doi: 10.5501/wjv.v4.i4.323.
9
Hepatitis C virus genetic variability and evolution.
World J Hepatol. 2015 Apr 28;7(6):831-45. doi: 10.4254/wjh.v7.i6.831.
10
Genotype- and Subtype-Independent Full-Genome Sequencing Assay for Hepatitis C Virus.
J Clin Microbiol. 2015 Jul;53(7):2049-59. doi: 10.1128/JCM.02624-14. Epub 2015 Apr 15.

本文引用的文献

1
The sensitivity of massively parallel sequencing for detecting candidate infectious agents associated with human tissue.
PLoS One. 2011;6(5):e19838. doi: 10.1371/journal.pone.0019838. Epub 2011 May 13.
3
Integrative genomics viewer.
Nat Biotechnol. 2011 Jan;29(1):24-6. doi: 10.1038/nbt.1754.
4
Viral sequence evolution in Chinese genotype 1b chronic hepatitis C patients experiencing unsuccessful interferon treatment.
Infect Genet Evol. 2011 Mar;11(2):382-90. doi: 10.1016/j.meegid.2010.11.011. Epub 2010 Dec 13.
7
Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect.
Nature. 2010 May 6;465(7294):96-100. doi: 10.1038/nature08960. Epub 2010 Apr 21.
9
Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations.
J Virol. 2010 May;84(10):5303-13. doi: 10.1128/JVI.00312-10. Epub 2010 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验