Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Germany.
Circ Res. 2012 Feb 3;110(3):394-405. doi: 10.1161/CIRCRESAHA.111.253658. Epub 2011 Dec 29.
The nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of gene transcription in vascular cells and mediates the vascular protection observed with antidiabetic glitazones.
To determine the molecular mechanism of ligand-dependent transrepression in vascular smooth muscle cells and their impact on the vascular protective actions of PPARγ.
Here, we report a molecular pathway in vascular smooth muscle cells by which ligand-activated PPARγ represses transcriptional activation of the matrix-degrading matrix metalloproteinase-9 (MMP-9) gene, a crucial mediator of vascular injury. PPARγ-mediated transrepression of the MMP-9 gene was dependent on the presence of the high-mobility group A1 (HMGA1) protein, a gene highly expressed in vascular smooth muscle cells, newly identified by oligonucleotide array expression analysis. Transrepression of MMP-9 by PPARγ and regulation by HMGA1 required PPARγ SUMOylation at K367. This process was associated with formation of a complex between PPARγ, HMGA1, and the SUMO E2 ligase Ubc9 (ubiquitin-like protein SUMO-1 conjugating enzyme). After PPARγ ligand stimulation, HMGA1 and PPARγ were recruited to the MMP-9 promoter, which facilitated binding of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor), a nuclear corepressor involved in transrepression. The relevance of HMGA1 for vascular PPARγ signaling was underlined by the complete absence of vascular protection through a PPARγ ligand in HMGA1(-/-) mice after arterial wire injury.
The present data suggest that ligand-dependent formation of HMGA1-Ubc9-PPARγ complexes facilitates PPARγ SUMOylation, which results in the prevention of SMRT corepressor clearance and induction of MMP-9 transrepression. These data provide new information on PPARγ-dependent vascular transcriptional regulation and help us to understand the molecular consequences of therapeutic interventions with PPARγ ligands in the vasculature.
核受体过氧化物酶体增殖物激活受体-γ(PPARγ)是血管细胞中基因转录的重要调节因子,介导了抗糖尿病噻唑烷二酮类药物所观察到的血管保护作用。
确定血管平滑肌细胞中配体依赖性反式转录抑制的分子机制及其对 PPARγ 的血管保护作用的影响。
在这里,我们在血管平滑肌细胞中报告了一种分子途径,通过该途径,配体激活的 PPARγ 抑制基质降解的基质金属蛋白酶-9(MMP-9)基因的转录激活,MMP-9 基因是血管损伤的关键介质。PPARγ 介导的 MMP-9 基因反式转录抑制依赖于高迁移率族蛋白 A1(HMGA1)蛋白的存在,HMGA1 蛋白是血管平滑肌细胞中高度表达的基因,通过寡核苷酸阵列表达分析新鉴定。PPARγ 通过 SUMO 化 K367 对 MMP-9 的反式转录抑制以及 HMGA1 的调节需要 PPARγ。该过程与 PPARγ、HMGA1 和 SUMO E2 连接酶 Ubc9(泛素样蛋白 SUMO-1 连接酶)之间形成复合物有关。在 PPARγ 配体刺激后,HMGA1 和 PPARγ 被募集到 MMP-9 启动子,这促进了核核心抑制物 SMRT(维甲酸和甲状腺激素受体沉默调节剂)的结合,该抑制物参与反式转录抑制。在动脉线损伤后,HMGA1(-/-)小鼠中完全缺乏血管保护作用,这突出表明了 HMGA1 对血管 PPARγ 信号的相关性。
本研究数据表明,配体依赖性 HMGA1-Ubc9-PPARγ 复合物的形成促进了 PPARγ SUMO 化,从而防止了 SMRT 核心抑制物的清除和 MMP-9 反式转录抑制的诱导。这些数据提供了关于 PPARγ 依赖性血管转录调节的新信息,并帮助我们理解在血管中使用 PPARγ 配体进行治疗干预的分子后果。