Leiden-Amsterdam Center for Drug Research, Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University, The Netherlands.
Curr Drug Metab. 2012 Feb;13(2):155-66. doi: 10.2174/138920012798918471.
Recently, it was found that mutations in the binding cavity of drug-metabolizing Cytochrome P450 BM3 mutants can result in major changes in regioselectivity in testosterone (TES) hydroxylation. In the current work, we report the intrinsic reactivity of TES' C-H bonds and our attempts to rationalize experimentally observed changes in TES hydroxylation using a protein structure-based in silico approach, by setting up and employing a combined Molecular Dynamics (MD) and ligand docking approach to account for the flexibility and plasticity of BM3 mutants. Using this approach, about 100,000 TES binding poses were obtained per mutant. The predicted regioselectivity in TES hydroxylation by the mutants was found to be in disagreement with experiment. As revealed in a detailed structural analysis of the obtained docking poses, this disagreement is due to limitations in correctly scoring hydrogen-bonding and steric interactions with specific active-site residues, which could explain the experimentally observed trends in regioselectivity in TES hydroxylation.
最近发现,药物代谢细胞色素 P450 BM3 突变体结合腔中的突变可导致睾酮(TES)羟化的区域选择性发生重大变化。在当前的工作中,我们报告了 TES 的 C-H 键的固有反应性,并尝试使用基于蛋白质结构的计算方法来合理化使用实验观察到的 TES 羟化变化,方法是建立并使用组合分子动力学(MD)和配体对接方法来解释 BM3 突变体的灵活性和可塑性。使用这种方法,每个突变体获得了大约 100,000 个 TES 结合构象。突变体预测的 TES 羟化区域选择性与实验结果不一致。从获得的对接构象的详细结构分析中揭示,这种不一致是由于正确评分氢键和与特定活性位点残基的空间相互作用的能力有限,这可以解释 TES 羟化区域选择性的实验观察趋势。