Suppr超能文献

谷氨酸能突触在底丘脑核中的频率选择性和多巴胺依赖性可塑性。

Frequency selectivity and dopamine-dependence of plasticity at glutamatergic synapses in the subthalamic nucleus.

机构信息

Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, UK.

出版信息

Neuroscience. 2012 Feb 17;203:1-11. doi: 10.1016/j.neuroscience.2011.12.027. Epub 2011 Dec 22.

Abstract

In Parkinson's disease, subthalamic nucleus (STN) neurons burst fire with increased periodicity and synchrony. This may entail abnormal release of glutamate, the major source of which in STN is cortical afferents. Indeed, the cortico-subthalamic pathway is implicated in the emergence of excessive oscillations, which are reduced, as are symptoms, by dopamine-replacement therapy or deep brain stimulation (DBS) targeted to STN. Here we hypothesize that glutamatergic synapses in the STN may be differentially modulated by low-frequency stimulation (LFS) and high-frequency stimulation (HFS), the latter mimicking deep brain stimulation. Recordings of evoked and spontaneous excitatory post synaptic currents (EPSCs) were made from STN neurons in brain slices obtained from dopamine-intact and chronically dopamine-depleted adult rats. HFS had no significant effect on evoked (e) EPSC amplitude in dopamine-intact slices (104.4±8.0%) but depressed eEPSCs in dopamine-depleted slices (67.8±6.2%). Conversely, LFS potentiated eEPSCs in dopamine-intact slices (126.4±8.1%) but not in dopamine-depleted slices (106.7±10.0%). Analyses of paired-pulse ratio, coefficient of variation, and spontaneous EPSCs suggest that the depression and potentiation have a presynaptic locus of expression. These results indicate that the synaptic efficacy in dopamine-intact tissue is enhanced by LFS. Furthermore, the synaptic efficacy in dopamine-depleted tissue is depressed by HFS. Therefore the therapeutic effects of DBS in Parkinson's disease appear mediated, in part, by glutamatergic cortico-subthalamic synaptic depression and implicate dopamine-dependent increases in the weight of glutamate synapses, which would facilitate the transfer of pathological oscillations from the cortex.

摘要

在帕金森病中,丘脑底核 (STN) 神经元以增加的周期性和同步性爆发性放电。这可能需要谷氨酸的异常释放,STN 中谷氨酸的主要来源是皮质传入。事实上,皮质-丘脑底核通路与过度振荡的出现有关,而这种振荡通过多巴胺替代疗法或针对 STN 的深部脑刺激 (DBS) 减少,症状也随之减少。在这里,我们假设 STN 中的谷氨酸能突触可能会受到低频刺激 (LFS) 和高频刺激 (HFS) 的不同调节,后者模拟深部脑刺激。我们从多巴胺完整和慢性多巴胺耗竭的成年大鼠获得的脑片中记录 STN 神经元的诱发和自发兴奋性突触后电流 (EPSC)。HFS 对多巴胺完整切片中的诱发 (e)EPSC 幅度没有显著影响 (104.4±8.0%),但在多巴胺耗竭切片中则降低 (67.8±6.2%)。相反,LFS 增强了多巴胺完整切片中的 eEPSC (126.4±8.1%),但不能增强多巴胺耗竭切片中的 eEPSC (106.7±10.0%)。成对脉冲比、变异系数和自发 EPSC 的分析表明,抑制和增强具有突触前表达的位置。这些结果表明,LFS 增强了多巴胺完整组织中的突触效能。此外,HFS 抑制了多巴胺耗竭组织中的突触效能。因此,DBS 在帕金森病中的治疗效果似乎部分通过谷氨酸能皮质-丘脑底核突触抑制来介导,并暗示多巴胺依赖性增加谷氨酸突触的权重,这将有助于从皮质转移病理性振荡。

相似文献

1
Frequency selectivity and dopamine-dependence of plasticity at glutamatergic synapses in the subthalamic nucleus.
Neuroscience. 2012 Feb 17;203:1-11. doi: 10.1016/j.neuroscience.2011.12.027. Epub 2011 Dec 22.
2
Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
Synapse. 2003 Dec 15;50(4):314-9. doi: 10.1002/syn.10274.
3
Connectivity and Dynamics Underlying Synaptic Control of the Subthalamic Nucleus.
J Neurosci. 2019 Mar 27;39(13):2470-2481. doi: 10.1523/JNEUROSCI.1642-18.2019. Epub 2019 Jan 30.
4
D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus.
J Physiol. 2008 Apr 15;586(8):2121-42. doi: 10.1113/jphysiol.2008.151118. Epub 2008 Feb 21.
5
Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus.
J Neurosurg. 2004 Sep;101(3):511-7. doi: 10.3171/jns.2004.101.3.0511.
7
Axonal failure during high frequency stimulation of rat subthalamic nucleus.
J Physiol. 2011 Jun 1;589(Pt 11):2781-93. doi: 10.1113/jphysiol.2011.205807. Epub 2011 Apr 11.
9
Subthalamic stimulation evokes complex EPSCs in the rat substantia nigra pars reticulata in vitro.
J Physiol. 2006 Jun 15;573(Pt 3):697-709. doi: 10.1113/jphysiol.2006.110031. Epub 2006 Apr 13.

引用本文的文献

1
Amplifying post-stimulation oscillatory dynamics by engaging synaptic plasticity with transcranial alternating current stimulation.
Front Netw Physiol. 2025 Jul 18;5:1621283. doi: 10.3389/fnetp.2025.1621283. eCollection 2025.
2
Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease.
Transl Neurodegener. 2023 Nov 30;12(1):55. doi: 10.1186/s40035-023-00390-w.
3
Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders.
Front Neuroinform. 2023 Jun 21;17:1156818. doi: 10.3389/fninf.2023.1156818. eCollection 2023.
4
Exploration behavior after reversals is predicted by STN-GPe synaptic plasticity in a basal ganglia model.
iScience. 2023 Apr 11;26(5):106599. doi: 10.1016/j.isci.2023.106599. eCollection 2023 May 19.
5
Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology.
Front Netw Physiol. 2022 Mar 4;2:817524. doi: 10.3389/fnetp.2022.817524. eCollection 2022.
6
Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli.
PLoS Comput Biol. 2022 Nov 3;18(11):e1010568. doi: 10.1371/journal.pcbi.1010568. eCollection 2022 Nov.
7
PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits.
Neuropharmacology. 2020 Aug 15;173:107971. doi: 10.1016/j.neuropharm.2020.107971. Epub 2020 Jan 25.
9
NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus.
J Neurosci. 2015 Dec 2;35(48):15971-83. doi: 10.1523/JNEUROSCI.1702-15.2015.
10
Mechanisms of deep brain stimulation.
J Neurophysiol. 2016 Jan 1;115(1):19-38. doi: 10.1152/jn.00281.2015. Epub 2015 Oct 28.

本文引用的文献

1
Alterations in brain connectivity underlying beta oscillations in Parkinsonism.
PLoS Comput Biol. 2011 Aug;7(8):e1002124. doi: 10.1371/journal.pcbi.1002124. Epub 2011 Aug 11.
3
Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease.
Brain. 2011 Feb;134(Pt 2):359-74. doi: 10.1093/brain/awq332. Epub 2010 Dec 8.
4
Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.
Eur J Neurosci. 2010 Oct;32(7):1080-91. doi: 10.1111/j.1460-9568.2010.07413.x.
5
Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients.
J Neurol Neurosurg Psychiatry. 2011 May;82(5):569-73. doi: 10.1136/jnnp.2010.217489. Epub 2010 Oct 9.
6
7
Optical deconstruction of parkinsonian neural circuitry.
Science. 2009 Apr 17;324(5925):354-9. doi: 10.1126/science.1167093. Epub 2009 Mar 19.
9
Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity.
Exp Neurol. 2009 Feb;215(2):380-7. doi: 10.1016/j.expneurol.2008.11.008. Epub 2008 Nov 25.
10
Striatal plasticity and basal ganglia circuit function.
Neuron. 2008 Nov 26;60(4):543-54. doi: 10.1016/j.neuron.2008.11.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验