Suppr超能文献

周期性多通道刺激,采用单脉冲和爆发刺激,重塑可塑神经元网络的突触。

Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli.

机构信息

Department of Neurosurgery, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2022 Nov 3;18(11):e1010568. doi: 10.1371/journal.pcbi.1010568. eCollection 2022 Nov.

Abstract

Synaptic dysfunction is associated with several brain disorders, including Alzheimer's disease, Parkinson's disease (PD) and obsessive compulsive disorder (OCD). Utilizing synaptic plasticity, brain stimulation is capable of reshaping synaptic connectivity. This may pave the way for novel therapies that specifically counteract pathological synaptic connectivity. For instance, in PD, novel multichannel coordinated reset stimulation (CRS) was designed to counteract neuronal synchrony and down-regulate pathological synaptic connectivity. CRS was shown to entail long-lasting therapeutic aftereffects in PD patients and related animal models. This is in marked contrast to conventional deep brain stimulation (DBS) therapy, where PD symptoms return shortly after stimulation ceases. In the present paper, we study synaptic reshaping by periodic multichannel stimulation (PMCS) in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity (STDP). During PMCS, phase-shifted periodic stimulus trains are delivered to segregated neuronal subpopulations. Harnessing STDP, PMCS leads to changes of the synaptic network structure. We found that the PMCS-induced changes of the network structure depend on both the phase lags between stimuli and the shape of individual stimuli. Single-pulse stimuli and burst stimuli with low intraburst frequency down-regulate synapses between neurons receiving stimuli simultaneously. In contrast, burst stimuli with high intraburst frequency up-regulate these synapses. We derive theoretical approximations of the stimulation-induced network structure. This enables us to formulate stimulation strategies for inducing a variety of network structures. Our results provide testable hypotheses for future pre-clinical and clinical studies and suggest that periodic multichannel stimulation may be suitable for reshaping plastic neuronal networks to counteract pathological synaptic connectivity. Furthermore, we provide novel insight on how the stimulus type may affect the long-lasting outcome of conventional DBS. This may strongly impact parameter adjustment procedures for clinical DBS, which, so far, primarily focused on acute effects of stimulation.

摘要

突触功能障碍与多种脑部疾病有关,包括阿尔茨海默病、帕金森病 (PD) 和强迫症 (OCD)。利用突触可塑性,脑刺激能够重塑突触连接。这可能为专门对抗病理性突触连接的新型疗法铺平道路。例如,在 PD 中,新型多通道协调重置刺激 (CRS) 被设计用于对抗神经元同步和下调病理性突触连接。CRS 已被证明在 PD 患者和相关动物模型中具有持久的治疗后效应。这与传统的深部脑刺激 (DBS) 疗法形成鲜明对比,在 DBS 疗法中,刺激停止后 PD 症状很快就会恢复。在本文中,我们研究了具有尖峰时间依赖性可塑性 (STDP) 的漏电积分和放电 (LIF) 神经元网络中的周期性多通道刺激 (PMCS) 引起的突触重塑。在 PMCS 期间,向分离的神经元亚群发送相移周期性刺激列车。利用 STDP,PMCS 导致突触网络结构发生变化。我们发现,PMCS 诱导的网络结构变化既取决于刺激之间的相位滞后,也取决于单个刺激的形状。单脉冲刺激和低内爆发频率的爆发刺激下调同时接收刺激的神经元之间的突触。相比之下,高内爆发频率的爆发刺激上调这些突触。我们推导出刺激诱导的网络结构的理论近似。这使我们能够制定各种刺激策略来诱导各种网络结构。我们的研究结果为未来的临床前和临床研究提供了可检验的假设,并表明周期性多通道刺激可能适合重塑可塑性神经元网络以对抗病理性突触连接。此外,我们提供了关于刺激类型如何影响传统 DBS 长期效果的新见解。这可能会强烈影响临床 DBS 的参数调整程序,迄今为止,这些程序主要集中在刺激的急性效应上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b481/9632832/28ab63098cc1/pcbi.1010568.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验