Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
FEBS Lett. 2012 Mar 9;586(5):640-5. doi: 10.1016/j.febslet.2011.12.023. Epub 2011 Dec 29.
The function of membrane-bound transporters is commonly affected by the milieu of the hydrophobic, membrane-spanning part of the transmembrane protein. Consequently, functional studies of these proteins often involve incorporation into a native-like bilayer where the lipid components of the membrane can be controlled. The classical approach is to reconstitute the purified protein into liposomes. Even though the use of such liposomes is essential for studies of transmembrane transport processes in general, functional studies of the transporters themselves in liposomes suffer from several disadvantages. For example, transmembrane proteins can adopt two different orientations when reconstituted into liposomes, and one of these populations may be inaccessible to ligands, to changes in pH or ion concentration in the external solution. Furthermore, optical studies of proteins reconstituted in liposomes suffer from significant light scattering, which diminishes the signal-to-noise value of the measurements. One attractive approach to circumvent these problems is to use nanodiscs, which are phospholipid bilayers encircled by a stabilizing amphipathic helical membrane scaffold protein. These membrane nanodiscs are stable, soluble in aqueous solution without detergent and do not scatter light significantly. In the present study, we have developed a protocol for reconstitution of the aa(3)- and ba(3)-type cytochrome c oxidases into nanodiscs. Furthermore, we studied proton-coupled electron-transfer reactions in these enzymes with microsecond time resolution. The data show that the nanodisc membrane environment accelerates proton uptake in both oxidases.
膜结合转运蛋白的功能通常受跨膜蛋白疏水、跨膜部分的环境影响。因此,这些蛋白质的功能研究通常涉及到将其整合到类似天然的双层膜中,以便控制膜的脂质成分。经典的方法是将纯化的蛋白质重构成脂质体。尽管这种脂质体的使用对于一般的跨膜转运过程的研究是必不可少的,但脂质体中转运蛋白本身的功能研究存在几个缺点。例如,当跨膜蛋白被重构成脂质体时,它们可以采取两种不同的取向,其中一种可能无法与配体、外部溶液中 pH 值或离子浓度的变化相互作用。此外,在脂质体中重组的蛋白质的光学研究受到显著的光散射的影响,这降低了测量的信噪比。一种有吸引力的方法是使用纳米盘来规避这些问题,纳米盘是由稳定的两亲性螺旋膜支架蛋白包围的磷脂双层。这些膜纳米盘是稳定的,可溶于水溶液中,无需去污剂,并且不会显著散射光。在本研究中,我们开发了一种将 aa(3)-和 ba(3)-型细胞色素 c 氧化酶重构成纳米盘的方案。此外,我们还研究了这些酶中的质子偶联电子转移反应,具有微秒时间分辨率。数据表明,纳米盘膜环境加速了两种氧化酶中的质子摄取。