Suppr超能文献

在膜纳米盘中重建呼吸氧化酶以研究质子偶联电子转移。

Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer.

机构信息

Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.

出版信息

FEBS Lett. 2012 Mar 9;586(5):640-5. doi: 10.1016/j.febslet.2011.12.023. Epub 2011 Dec 29.

Abstract

The function of membrane-bound transporters is commonly affected by the milieu of the hydrophobic, membrane-spanning part of the transmembrane protein. Consequently, functional studies of these proteins often involve incorporation into a native-like bilayer where the lipid components of the membrane can be controlled. The classical approach is to reconstitute the purified protein into liposomes. Even though the use of such liposomes is essential for studies of transmembrane transport processes in general, functional studies of the transporters themselves in liposomes suffer from several disadvantages. For example, transmembrane proteins can adopt two different orientations when reconstituted into liposomes, and one of these populations may be inaccessible to ligands, to changes in pH or ion concentration in the external solution. Furthermore, optical studies of proteins reconstituted in liposomes suffer from significant light scattering, which diminishes the signal-to-noise value of the measurements. One attractive approach to circumvent these problems is to use nanodiscs, which are phospholipid bilayers encircled by a stabilizing amphipathic helical membrane scaffold protein. These membrane nanodiscs are stable, soluble in aqueous solution without detergent and do not scatter light significantly. In the present study, we have developed a protocol for reconstitution of the aa(3)- and ba(3)-type cytochrome c oxidases into nanodiscs. Furthermore, we studied proton-coupled electron-transfer reactions in these enzymes with microsecond time resolution. The data show that the nanodisc membrane environment accelerates proton uptake in both oxidases.

摘要

膜结合转运蛋白的功能通常受跨膜蛋白疏水、跨膜部分的环境影响。因此,这些蛋白质的功能研究通常涉及到将其整合到类似天然的双层膜中,以便控制膜的脂质成分。经典的方法是将纯化的蛋白质重构成脂质体。尽管这种脂质体的使用对于一般的跨膜转运过程的研究是必不可少的,但脂质体中转运蛋白本身的功能研究存在几个缺点。例如,当跨膜蛋白被重构成脂质体时,它们可以采取两种不同的取向,其中一种可能无法与配体、外部溶液中 pH 值或离子浓度的变化相互作用。此外,在脂质体中重组的蛋白质的光学研究受到显著的光散射的影响,这降低了测量的信噪比。一种有吸引力的方法是使用纳米盘来规避这些问题,纳米盘是由稳定的两亲性螺旋膜支架蛋白包围的磷脂双层。这些膜纳米盘是稳定的,可溶于水溶液中,无需去污剂,并且不会显著散射光。在本研究中,我们开发了一种将 aa(3)-和 ba(3)-型细胞色素 c 氧化酶重构成纳米盘的方案。此外,我们还研究了这些酶中的质子偶联电子转移反应,具有微秒时间分辨率。数据表明,纳米盘膜环境加速了两种氧化酶中的质子摄取。

相似文献

1
Reconstitution of respiratory oxidases in membrane nanodiscs for investigation of proton-coupled electron transfer.
FEBS Lett. 2012 Mar 9;586(5):640-5. doi: 10.1016/j.febslet.2011.12.023. Epub 2011 Dec 29.
2
Proton transfer in ba(3) cytochrome c oxidase from Thermus thermophilus.
Biochim Biophys Acta. 2012 Apr;1817(4):650-7. doi: 10.1016/j.bbabio.2011.11.015. Epub 2011 Dec 7.
3
Kinetic design of the respiratory oxidases.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11057-62. doi: 10.1073/pnas.1104103108. Epub 2011 Jun 20.
4
Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.
Biochemistry. 2012 Jun 5;51(22):4507-17. doi: 10.1021/bi300132t. Epub 2012 May 24.
6
Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins.
Biochemistry. 2007 Feb 27;46(8):2059-69. doi: 10.1021/bi602371n. Epub 2007 Jan 31.
7
Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs.
Mol Cell Proteomics. 2011 Sep;10(9):M111.010876. doi: 10.1074/mcp.M111.010876. Epub 2011 Jun 29.
8
High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.
PLoS One. 2011;6(7):e22348. doi: 10.1371/journal.pone.0022348. Epub 2011 Jul 21.
9
Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from thermus thermophilus.
EMBO J. 2000 Apr 17;19(8):1766-76. doi: 10.1093/emboj/19.8.1766.
10
Time-resolved generation of membrane potential by ba cytochrome c oxidase from Thermus thermophilus coupled to single electron injection into the O and O states.
Biochim Biophys Acta Bioenerg. 2017 Nov;1858(11):915-926. doi: 10.1016/j.bbabio.2017.08.007. Epub 2017 Aug 12.

引用本文的文献

1
Membrane Protein Activity Induces Specific Molecular Changes in Nanodiscs Monitored by FTIR Difference Spectroscopy.
Front Mol Biosci. 2022 Jun 13;9:915328. doi: 10.3389/fmolb.2022.915328. eCollection 2022.
2
Folding of the β-Barrel Membrane Protein OmpA into Nanodiscs.
Biophys J. 2020 Jan 21;118(2):403-414. doi: 10.1016/j.bpj.2019.11.3381. Epub 2019 Nov 28.
3
Nanodiscs: A Controlled Bilayer Surface for the Study of Membrane Proteins.
Annu Rev Biophys. 2018 May 20;47:107-124. doi: 10.1146/annurev-biophys-070816-033620. Epub 2018 Mar 1.
4
Recent advances in nanodisc technology for membrane protein studies (2012-2017).
FEBS Lett. 2017 Jul;591(14):2057-2088. doi: 10.1002/1873-3468.12706. Epub 2017 Jul 6.
5
Nanodiscs in Membrane Biochemistry and Biophysics.
Chem Rev. 2017 Mar 22;117(6):4669-4713. doi: 10.1021/acs.chemrev.6b00690. Epub 2017 Feb 8.
6
Nanodiscs for structural and functional studies of membrane proteins.
Nat Struct Mol Biol. 2016 Jun;23(6):481-6. doi: 10.1038/nsmb.3195. Epub 2016 Jun 7.
7
Functional and structural evaluation of bovine heart cytochrome c oxidase incorporated into bicelles.
Biochimie. 2016 Feb;121:21-8. doi: 10.1016/j.biochi.2015.11.018. Epub 2015 Nov 23.
8
Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold.
ACS Chem Biol. 2015 Nov 20;10(11):2448-54. doi: 10.1021/acschembio.5b00627. Epub 2015 Sep 21.
9
Radioligand binding to nanodisc-reconstituted membrane transporters assessed by the scintillation proximity assay.
Biochemistry. 2014 Jan 14;53(1):4-6. doi: 10.1021/bi401412e. Epub 2013 Dec 30.
10
Nanodiscs as a new tool to examine lipid-protein interactions.
Methods Mol Biol. 2013;974:415-33. doi: 10.1007/978-1-62703-275-9_18.

本文引用的文献

1
Kinetic design of the respiratory oxidases.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11057-62. doi: 10.1073/pnas.1104103108. Epub 2011 Jun 20.
2
Lipid-protein interactions.
Biochem Soc Trans. 2011 Jun;39(3):761-6. doi: 10.1042/BST0390761.
3
Crystallographic and online spectral evidence for role of conformational change and conserved water in cytochrome oxidase proton pump.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1284-9. doi: 10.1073/pnas.1012846108. Epub 2011 Jan 4.
4
Proton-coupled electron transfer in cytochrome oxidase.
Chem Rev. 2010 Dec 8;110(12):7062-81. doi: 10.1021/cr1002003. Epub 2010 Nov 5.
5
Direct observation of stepped proteolipid ring rotation in E. coli F₀F₁-ATP synthase.
EMBO J. 2010 Dec 1;29(23):3911-23. doi: 10.1038/emboj.2010.259. Epub 2010 Oct 29.
6
Functional interactions between membrane-bound transporters and membranes.
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15763-7. doi: 10.1073/pnas.1006109107. Epub 2010 Aug 23.
9
Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.
Methods Enzymol. 2009;464:211-31. doi: 10.1016/S0076-6879(09)64011-8.
10
Membrane protein assembly into Nanodiscs.
FEBS Lett. 2010 May 3;584(9):1721-7. doi: 10.1016/j.febslet.2009.10.024. Epub 2009 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验