Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America.
PLoS One. 2011;6(7):e22348. doi: 10.1371/journal.pone.0022348. Epub 2011 Jul 21.
The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+) and e(-) transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3)-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2)-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B) atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3) and Cu(B) atoms that is best modeled as peroxide. The structure of ba(3)-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3)-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the door for systematic structure-function studies.
地球上有氧生命的基础化学涉及将氧气还原为水,并伴随质子转移。这一过程由血红素-铜氧化酶 (HCO) 超家族成员催化。尽管所有类型的 HCO 的晶体结构都已可用,但该酶的作用机制在原子水平上仍不清楚,即如何偶联定向 H(+)和 e(-) 传输。为了解决这个问题,我们报告了嗜热菌 Thermus thermophilus 的 ba(3)-型细胞色素 c 氧化酶的野生型和 A120F 突变体结构,分辨率为 1.8 Å。该酶已从类脂立方相结晶,该相模拟了生物膜环境。结构显示 20 个有序的脂质分子,占据蛋白质表面的结合位点或介导晶体包装界面。蛋白质内部包含 53 个水分子,其中 3 个被困在指定的质子转移 K 路径中,8 个位于 A 型酶中也可见的簇中,可能在产物水和质子转移的逸出中起作用。疏水的 O(2)摄取通道,将活性位点连接到脂质双层,包含一个最接近 Cu(B)原子的水分子,但除此之外没有残留的电子密度。活性位点包含强烈的电子密度,用于一对桥接血红素 Fe(a3)和 Cu(B)原子的键合原子,最好建模为过氧化物。ba(3)-氧化酶的结构揭示了有关酶在膜内的定位及其与脂质分子相互作用的新信息。原子分辨率的细节提供了对电子转移、氧气扩散进入活性位点、氧气还原为水以及质子跨膜泵浦机制的深入了解。开发一种用于生产可高分辨率衍射的 ba(3)-氧化酶晶体的稳健系统,以及建立用于产生突变体的表达系统,为系统的结构功能研究打开了大门。