Suppr超能文献

在选择性表达黄色荧光蛋白的小鼠中对视网膜神经节细胞形态的半自动化、定量分析。

Semi-automated, quantitative analysis of retinal ganglion cell morphology in mice selectively expressing yellow fluorescent protein.

机构信息

Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287-9205, USA.

出版信息

Exp Eye Res. 2012 Mar;96(1):107-15. doi: 10.1016/j.exer.2011.12.013. Epub 2011 Dec 22.

Abstract

The development of transgenic mouse lines that selectively label a subset of neurons provides unique opportunities to study detailed neuronal morphology and morphological changes under experimental conditions. In the present study, a mouse line in which a small number of retinal ganglion cells (RGCs) express yellow fluorescent protein (YFP) under control of the Thy-1 promoter was used (Feng et al., 2000). We characterized the number, distribution by retinal region and eccentricity of YFP-labeled RGCs using fluorescence microscopy and Stereo Investigator software (MicroBrightField, VT, USA). Then, we captured images of 4-6 YFP-expressing RGCs from each of 8 retinal regions by confocal microscopy, producing 3-dimensional and flattened data sets. A new semi-automated method to quantify the soma size, dendritic length and dendritic arbor complexity was developed using MetaMorph software (Molecular Devices, PA, USA). Our results show that YFP is expressed in 0.2% of all RGCs. Expression of YFP was not significantly different in central versus peripheral retina, but there were higher number of YFP-expressing RGCs in the temporal quadrant than in the nasal. By confocal-based analysis, 58% of RGCs expressing YFP did so at a high level, with the remainder distributed in decreasing levels of brightness. Variability in detailed morphometric parameters was as great between two fellow retinas as in retinas from different mice. The analytic methods developed for this selective YFP-expressing RGC model permit quantitative comparisons of parameters relevant to neuronal injury.

摘要

在本研究中,使用了一种在 Thy-1 启动子控制下少数视网膜神经节细胞 (RGC) 表达黄色荧光蛋白 (YFP) 的小鼠品系(Feng 等人,2000 年)。我们使用荧光显微镜和 Stereo Investigator 软件(MicroBrightField,VT,USA)来描述 YFP 标记的 RGC 的数量、视网膜区域和偏心度分布。然后,我们通过共聚焦显微镜从 8 个视网膜区域中的每个区域捕获 4-6 个表达 YFP 的 RGC 的图像,生成 3 维和平坦数据集。使用 MetaMorph 软件(Molecular Devices,PA,USA)开发了一种新的半自动化方法来定量测量体细胞大小、树突长度和树突分支复杂性。我们的结果表明,YFP 在所有 RGC 中的表达率为 0.2%。YFP 在中央与周边视网膜之间的表达没有显著差异,但在颞象限中表达 YFP 的 RGC 数量高于鼻侧。通过基于共聚焦的分析,58%表达 YFP 的 RGC 以高亮度表达,其余则以亮度递减的方式分布。两个同一只老鼠的视网膜之间的详细形态计量参数的变异性与不同老鼠的视网膜之间的变异性一样大。为这种选择性表达 YFP 的 RGC 模型开发的分析方法允许对与神经元损伤相关的参数进行定量比较。

相似文献

3
Melanopsin retinal ganglion cells are not labeled in Thy-1YFP-16 transgenic mice.
Neuroreport. 2018 Jan 17;29(2):118-122. doi: 10.1097/WNR.0000000000000918.
4
Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma.
Invest Ophthalmol Vis Sci. 2012 Jun 22;53(7):3847-57. doi: 10.1167/iovs.12-9712.
6
Effects of early postnatal exposure to ethanol on retinal ganglion cell morphology and numbers of neurons in the dorsolateral geniculate in mice.
Alcohol Clin Exp Res. 2011 Nov;35(11):2063-74. doi: 10.1111/j.1530-0277.2011.01557.x. Epub 2011 Jun 8.
7
Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells.
Invest Ophthalmol Vis Sci. 2011 Mar 1;52(3):1539-47. doi: 10.1167/iovs.10-6012.
8
GCaMP3 expressing cells in the ganglion cell layer of Thy1-GCaMP3 transgenic mice before and after optic nerve injury.
Exp Eye Res. 2021 Jan;202:108297. doi: 10.1016/j.exer.2020.108297. Epub 2020 Oct 10.
9
The Transcription Factor Prdm16 Marks a Single Retinal Ganglion Cell Subtype in the Mouse Retina.
Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5421-5433. doi: 10.1167/iovs.17-22442.
10
Neuron stress and loss following rodent anterior ischemic optic neuropathy in double-reporter transgenic mice.
Invest Ophthalmol Vis Sci. 2007 May;48(5):2304-10. doi: 10.1167/iovs.06-0486.

引用本文的文献

2
The Effect of Aging on Retinal Function and Retinal Ganglion Cell Morphology Following Intraocular Pressure Elevation.
Front Aging Neurosci. 2022 May 12;14:859265. doi: 10.3389/fnagi.2022.859265. eCollection 2022.
5
Correlation between retinal ganglion cell loss and nerve crush force-impulse established with instrumented tweezers in mice.
Neurol Res. 2020 May;42(5):379-386. doi: 10.1080/01616412.2020.1733322. Epub 2020 Feb 26.
6
Inducible rodent models of glaucoma.
Prog Retin Eye Res. 2020 Mar;75:100799. doi: 10.1016/j.preteyeres.2019.100799. Epub 2019 Sep 23.
7
Ultra-High Field Diffusion MRI Reveals Early Axonal Pathology in Spinal Cord of ALS mice.
Transl Neurodegener. 2018 Aug 8;7:20. doi: 10.1186/s40035-018-0122-z. eCollection 2018.
8
Assessing retinal ganglion cell damage.
Eye (Lond). 2017 Feb;31(2):209-217. doi: 10.1038/eye.2016.295. Epub 2017 Jan 13.
9
HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening.
BMC Bioinformatics. 2013;14 Suppl 16(Suppl 16):S12. doi: 10.1186/1471-2105-14-S16-S12. Epub 2013 Oct 22.
10
Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma.
Invest Ophthalmol Vis Sci. 2012 Jun 22;53(7):3847-57. doi: 10.1167/iovs.12-9712.

本文引用的文献

1
Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2011 Apr 6;52(5):2250-4. doi: 10.1167/iovs.10-6311.
2
Lack of neuroprotection against experimental glaucoma in c-Jun N-terminal kinase 3 knockout mice.
Exp Eye Res. 2011 Apr;92(4):299-305. doi: 10.1016/j.exer.2011.01.006. Epub 2011 Jan 25.
3
Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells.
Invest Ophthalmol Vis Sci. 2011 Mar 1;52(3):1539-47. doi: 10.1167/iovs.10-6012.
4
Automated reconstruction of neuronal morphology: an overview.
Brain Res Rev. 2011 Jun 24;67(1-2):94-102. doi: 10.1016/j.brainresrev.2010.11.003. Epub 2010 Nov 27.
5
Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss.
Invest Ophthalmol Vis Sci. 2011 Jan 21;52(1):434-41. doi: 10.1167/iovs.10-5856. Print 2011 Jan.
6
Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection.
Exp Eye Res. 2010 Sep;91(3):415-24. doi: 10.1016/j.exer.2010.06.018. Epub 2010 Jun 26.
7
Semi-automated Sholl analysis for quantifying changes in growth and differentiation of neurons and glia.
J Neurosci Methods. 2010 Jun 30;190(1):71-9. doi: 10.1016/j.jneumeth.2010.04.026. Epub 2010 May 11.
9
New mouse lines for the analysis of neuronal morphology using CreER(T)/loxP-directed sparse labeling.
PLoS One. 2009 Nov 16;4(11):e7859. doi: 10.1371/journal.pone.0007859.
10
The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):207-16. doi: 10.1167/iovs.09-3947. Epub 2009 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验