Suppr超能文献

聋人和听力正常的手语使用者的视空间处理和物体识别的皮质可塑性。

Cortical plasticity for visuospatial processing and object recognition in deaf and hearing signers.

机构信息

Georgetown University Medical Center, Washington DC 20057, USA.

出版信息

Neuroimage. 2012 Mar;60(1):661-72. doi: 10.1016/j.neuroimage.2011.12.031. Epub 2011 Dec 22.

Abstract

Experience-dependent plasticity in deaf participants has been shown in a variety of studies focused on either the dorsal or ventral aspects of the visual system, but both systems have never been investigated in concert. Using functional magnetic resonance imaging (fMRI), we investigated functional plasticity for spatial processing (a dorsal visual pathway function) and for object processing (a ventral visual pathway function) concurrently, in the context of differing sensory (auditory deprivation) and language (use of a signed language) experience. During scanning, deaf native users of American Sign Language (ASL), hearing native ASL users, and hearing participants without ASL experience attended to either the spatial arrangement of frames containing objects or the identity of the objects themselves. These two tasks revealed the expected dorsal/ventral dichotomy for spatial versus object processing in all groups. In addition, the object identity matching task contained both face and house stimuli, allowing us to examine category-selectivity in the ventral pathway in all three participant groups. When contrasting the groups we found that deaf signers differed from the two hearing groups in dorsal pathway parietal regions involved in spatial cognition, suggesting sensory experience-driven plasticity. Group differences in the object processing system indicated that responses in the face-selective right lateral fusiform gyrus and anterior superior temporal cortex were sensitive to a combination of altered sensory and language experience, whereas responses in the amygdala were more closely tied to sensory experience. By selectively engaging the dorsal and ventral visual pathways within participants in groups with different sensory and language experiences, we have demonstrated that these experiences affect the function of both of these systems, and that certain changes are more closely tied to sensory experience, while others are driven by the combination of sensory and language experience.

摘要

在各种专注于视觉系统背侧或腹侧方面的研究中,都已经证明了聋人参与者的经验依赖性可塑性,但这两个系统从未同时进行过研究。我们使用功能磁共振成像 (fMRI),同时研究了空间处理(背侧视觉通路功能)和物体处理(腹侧视觉通路功能)的功能可塑性,这两种功能的研究背景是不同的感官(听觉剥夺)和语言(使用手语)经验。在扫描过程中,美国手语(ASL)的聋人母语使用者、听力母语 ASL 用户和没有 ASL 经验的听力参与者分别关注包含物体的框架的空间排列或物体本身的身份。这两个任务揭示了所有组中预期的空间与物体处理之间的背侧/腹侧二分法。此外,物体身份匹配任务包含面部和房屋刺激,使我们能够在所有三个参与者群体中检查腹侧通路中的类别选择性。当对比这些组时,我们发现聋人使用者与两个听力组在涉及空间认知的背侧通路顶叶区域存在差异,表明感官经验驱动的可塑性。物体处理系统的组间差异表明,在右侧外侧梭状回和前上颞叶皮层的面部选择性区域的反应对改变的感官和语言经验的组合敏感,而杏仁核的反应则与感官经验更为密切相关。通过选择性地在具有不同感官和语言经验的参与者中参与背侧和腹侧视觉通路,我们证明了这些经验会影响这两个系统的功能,并且某些变化与感官经验更为密切相关,而其他变化则是由感官和语言经验的组合驱动的。

相似文献

1
Cortical plasticity for visuospatial processing and object recognition in deaf and hearing signers.
Neuroimage. 2012 Mar;60(1):661-72. doi: 10.1016/j.neuroimage.2011.12.031. Epub 2011 Dec 22.
2
Neural Activity During Mental Rotation in Deaf Signers: The Influence of Long-Term Sign Language Experience.
Ear Hear. 2018 Sep/Oct;39(5):1015-1024. doi: 10.1097/AUD.0000000000000540.
3
How Auditory Experience Differentially Influences the Function of Left and Right Superior Temporal Cortices.
J Neurosci. 2017 Sep 27;37(39):9564-9573. doi: 10.1523/JNEUROSCI.0846-17.2017. Epub 2017 Aug 18.
4
CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.
Neuroimage. 2010 Jan 1;49(1):994-1005. doi: 10.1016/j.neuroimage.2009.08.001. Epub 2009 Aug 11.
5
Neuroanatomical profiles of deafness in the context of native language experience.
J Neurosci. 2014 Apr 16;34(16):5613-20. doi: 10.1523/JNEUROSCI.3700-13.2014.
7
Visual field asymmetries for motion processing in deaf and hearing signers.
Brain Cogn. 2002 Jun;49(1):170-81. doi: 10.1006/brcg.2001.1498.
8
Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing.
J Neurosci. 2001 Nov 15;21(22):8931-42. doi: 10.1523/JNEUROSCI.21-22-08931.2001.
9
Human brain plasticity: evidence from sensory deprivation and altered language experience.
Prog Brain Res. 2002;138:177-88. doi: 10.1016/S0079-6123(02)38078-6.
10
Unraveling the impact of congenital deafness on individual brain organization.
Elife. 2025 Mar 12;13:RP96944. doi: 10.7554/eLife.96944.

引用本文的文献

1
Social perception in deaf individuals: A meta-analysis of neuroimaging studies.
Hum Brain Mapp. 2023 Nov;44(16):5402-5415. doi: 10.1002/hbm.26444. Epub 2023 Aug 23.
2
Evidence of an Effect of Gaming Experience on Visuospatial Attention in Deaf but Not in Hearing Individuals.
Front Psychol. 2020 Oct 20;11:534741. doi: 10.3389/fpsyg.2020.534741. eCollection 2020.
5
Does a Flatter General Gradient of Visual Attention Explain Peripheral Advantages and Central Deficits in Deaf Adults?
Front Psychol. 2017 May 16;8:713. doi: 10.3389/fpsyg.2017.00713. eCollection 2017.
6
Modifications of Visual Field Asymmetries for Face Categorization in Early Deaf Adults: A Study With Chimeric Faces.
Front Psychol. 2017 Jan 20;8:30. doi: 10.3389/fpsyg.2017.00030. eCollection 2017.
7
Altered Contralateral Auditory Cortical Morphology in Unilateral Sudden Sensorineural Hearing Loss.
Otol Neurotol. 2015 Dec;36(10):1622-7. doi: 10.1097/MAO.0000000000000892.
8
Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends.
Brain Lang. 2015 Aug;147:96-106. doi: 10.1016/j.bandl.2015.05.006. Epub 2015 Jul 10.
9
Altered regional and circuit resting-state activity associated with unilateral hearing loss.
PLoS One. 2014 May 1;9(5):e96126. doi: 10.1371/journal.pone.0096126. eCollection 2014.
10
Auditory deprivation affects biases of visuospatial attention as measured by line bisection.
Exp Brain Res. 2014 Sep;232(9):2767-73. doi: 10.1007/s00221-014-3960-7. Epub 2014 Apr 26.

本文引用的文献

2
The bimodal bilingual brain: effects of sign language experience.
Brain Lang. 2009 May-Jun;109(2-3):124-32. doi: 10.1016/j.bandl.2008.03.005. Epub 2008 May 8.
3
Cortical circuits for silent speechreading in deaf and hearing people.
Neuropsychologia. 2008 Apr;46(5):1233-41. doi: 10.1016/j.neuropsychologia.2007.11.026. Epub 2007 Dec 5.
4
Do deaf individuals see better?
Trends Cogn Sci. 2006 Nov;10(11):512-8. doi: 10.1016/j.tics.2006.09.006. Epub 2006 Oct 2.
5
Eye fixations of deaf and hearing observers in simultaneous communication perception.
Ear Hear. 2006 Aug;27(4):331-52. doi: 10.1097/01.aud.0000226248.45263.ad.
6
The acquisition of spatial constructions in American sign language and English.
J Deaf Stud Deaf Educ. 2006 Fall;11(4):391-402. doi: 10.1093/deafed/enl004. Epub 2006 Jun 19.
7
A neural system for learning about object function.
Cereb Cortex. 2007 Mar;17(3):513-21. doi: 10.1093/cercor/bhj176. Epub 2006 Mar 31.
8
Human parietal cortex in action.
Curr Opin Neurobiol. 2006 Apr;16(2):205-12. doi: 10.1016/j.conb.2006.03.005. Epub 2006 Mar 24.
9
Emotion and cognition: insights from studies of the human amygdala.
Annu Rev Psychol. 2006;57:27-53. doi: 10.1146/annurev.psych.56.091103.070234.
10
Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex.
J Cogn Neurosci. 2005 Oct;17(10):1621-37. doi: 10.1162/089892905774597173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验