IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France.
Biochimie. 2012 Apr;94(4):975-84. doi: 10.1016/j.biochi.2011.12.018. Epub 2011 Dec 26.
The ubiquitous small heat shock proteins are essential elements in cellular protection, through a molecular chaperone activity. Among them, human small heat shock protein HspB1, HspB4 and HspB5 are involved in oncogenesis, anti-apoptotic activity and lens transparency. Therefore, these proteins are potential therapeutic targets in many diseases. Their general chaperone activity is related to their dynamic and multiple oligomeric structures, which are still poorly understood. The tissue selective distribution of HspB1 and HspB4, two cellular partners of HspB5, suggests that these two proteins might have evolved to play distinct physiological functions. Moreover, hetero-complex formation seems to be favoured in vivo, yet the functional specificity of the HspB1-HspB5 and HspB4-HspB5 hetero-complexes compared to the homo-oligomers remains unclear in the stress response pathway. A powerful approach combining biochemistry, biophysics and bioinformatics, allowed us to compare the different assemblies, with a special emphasis on the structural data, subunit exchange properties, activity and sequence evolution. We showed that they all exhibit different properties, from structural organization in physiological versus stress conditions, to chaperone-like activity, whatever the level of sequence conservation. Subunit exchange kinetics leading to HspB1-HspB5 or HspB4-HspB5 hetero-complex formation is also different between these two complexes: HspB5 exchanges more rapidly subunits with HspB1 than with HspB4. The relative sequence conservation in the sHSP superfamily does hide important structural heterogeneity and flexibility, which confer an enlarged range of different surface necessary to efficiently form complexes with various stress-induced cellular targets. Our data suggest that the formation of hetero-complexes could be an original evolutionary strategy to gain new cellular functions.
普遍存在的小分子热休克蛋白是细胞保护的重要组成部分,通过分子伴侣活性实现。其中,人小分子热休克蛋白 HspB1、HspB4 和 HspB5 参与肿瘤发生、抗凋亡活性和晶状体透明度。因此,这些蛋白质是许多疾病潜在的治疗靶点。它们的一般伴侣活性与其动态和多种寡聚体结构有关,但这些结构仍知之甚少。HspB1 和 HspB4 与 HspB5 是细胞伴侣,它们在组织中的选择性分布表明,这两种蛋白质可能已经进化到发挥不同的生理功能。此外,异源复合物的形成似乎在体内更有利,但在应激反应途径中,与同源寡聚体相比,HspB1-HspB5 和 HspB4-HspB5 异源复合物的功能特异性尚不清楚。一种结合生物化学、生物物理学和生物信息学的强大方法使我们能够比较不同的组装体,特别强调结构数据、亚基交换特性、活性和序列进化。我们表明,它们在结构组织、生理与应激条件下的伴侣样活性以及序列保守性的任何水平下,都表现出不同的特性。导致 HspB1-HspB5 或 HspB4-HspB5 异源复合物形成的亚基交换动力学在这两种复合物之间也不同:HspB5 与 HspB1 交换亚基的速度比与 HspB4 交换的速度更快。sHSP 超家族的相对序列保守性确实隐藏了重要的结构异质性和灵活性,这赋予了更大范围的不同表面,使其能够与各种应激诱导的细胞靶标有效地形成复合物。我们的数据表明,异源复合物的形成可能是一种获得新细胞功能的原始进化策略。