Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
Bioinorg Chem Appl. 2011;2011:173782. doi: 10.1155/2011/173782. Epub 2011 Dec 20.
A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 10(3) s(-1) to 5 × 10(3) s(-1) and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 10(3) s(-1) and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C.
分离式 Hopkinson 压杆用于研究应变率在 1×10(3)s(-1)至 5×10(3)s(-1)之间、温度在 25°C 至 800°C 之间的生物医学 316L 不锈钢的动态力学性能。结果表明,流动应力、加工硬化率、应变速率敏感性和热激活能都显著依赖于应变、应变率和温度。在恒温下,流动应力、加工硬化率和应变速率敏感性随应变率的增加而增加,而热激活能则降低。只有在应变率为 5×10(3)s(-1)且温度为 25°C 或 200°C 时,试样才会发生灾难性失效。扫描电子显微镜观察表明,试样以韧性剪切模式断裂。光学显微镜分析表明,随着应变率的增加,晶粒内的滑移带数量增加。此外,在最高温度 800°C 下测试的试样中观察到变形组织的动态再结晶。