N.I. Pirogov Russian State Medical University, Moscow, Russia.
J Cardiol. 2012 Mar;59(2):190-4. doi: 10.1016/j.jjcc.2011.11.005. Epub 2012 Jan 2.
The aim of this study was to develop an artificial neural networks-based (ANNs) diagnostic model for coronary heart disease (CHD) using a complex of traditional and genetic factors of this disease. The original database for ANNs included clinical, laboratory, functional, coronary angiographic, and genetic [single nucleotide polymorphisms (SNPs)] characteristics of 487 patients (327 with CHD caused by coronary atherosclerosis, 160 without CHD). By changing the types of ANN and the number of input factors applied, we created models that demonstrated 64-94% accuracy. The best accuracy was obtained with a neural networks topology of multilayer perceptron with two hidden layers for models included by both genetic and non-genetic CHD risk factors.
本研究旨在利用冠心病(CHD)的传统和遗传因素构建基于人工神经网络(ANNs)的诊断模型。该 ANN 的原始数据库包含 487 名患者(327 名由冠状动脉粥样硬化引起的 CHD 患者,160 名无 CHD 患者)的临床、实验室、功能、冠状动脉造影和遗传(单核苷酸多态性(SNPs))特征。通过改变 ANN 的类型和应用的输入因素的数量,我们创建了准确性为 64-94%的模型。在包括遗传和非遗传 CHD 危险因素的模型中,具有两个隐藏层的多层感知器神经网络拓扑结构获得了最佳的准确性。