Centro de Investigación en Ciencia Aplicada y Tecnología Aplicada Cerro Blanco No. 141. Col. Colinas del Cimatario, Santiago de Querétaro, Querétaro, Mexico.
Sensors (Basel). 2010;10(6):6092-114. doi: 10.3390/s100606092. Epub 2010 Jun 18.
In this work, a new approach to background subtraction based on independent component analysis is presented. This approach assumes that background and foreground information are mixed in a given sequence of images. Then, foreground and background components are identified, if their probability density functions are separable from a mixed space. Afterwards, the components estimation process consists in calculating an unmixed matrix. The estimation of an unmixed matrix is based on a fast ICA algorithm, which is estimated as a Newton-Raphson maximization approach. Next, the motion components are represented by the mid-significant eigenvalues from the unmixed matrix. Finally, the results show the approach capabilities to detect efficiently motion in outdoors and indoors scenarios. The results show that the approach is robust to luminance conditions changes at scene.
在这项工作中,提出了一种基于独立分量分析的新的背景减除方法。该方法假设背景和前景信息在给定的图像序列中混合。然后,如果其概率密度函数可从混合空间中分离出来,则识别前景和背景分量。之后,组件估计过程包括计算混合矩阵。混合矩阵的估计基于快速独立分量分析算法,该算法估计为牛顿-拉夫逊最大化方法。接下来,运动分量由混合矩阵的中间显著特征值表示。最后,结果表明该方法能够有效地检测户外和室内场景中的运动。结果表明,该方法对场景中的亮度条件变化具有鲁棒性。