Suppr超能文献

基于快速主成分追踪和运动显著度的视频前景检测算法。

Video Foreground Detection Algorithm Based on Fast Principal Component Pursuit and Motion Saliency.

机构信息

College of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China.

出版信息

Comput Intell Neurosci. 2019 Feb 3;2019:4769185. doi: 10.1155/2019/4769185. eCollection 2019.

Abstract

Aiming at the shortcoming of being unsuitable for dynamic background and high computational complexity of the existing RPCA- (robust principal component analysis-) based block-sparse moving object detection method, this paper proposes a two-stage foreground detection framework based on motion saliency for video sequence. At the first stage, the observed image sequence is regarded as the sum of a low-rank background matrix and a sparse outlier matrix, and then the decomposition is solved by the RPCA method via fast PCP (principal component pursuit). At the second stage, the sparse foreground blocks are obtained according to the spectral residuals and the spatial correlation of the foreground region. Finally, the block-sparse RPCA algorithm through fast PCP is used to estimate foreground areas dynamically and to reconstruct the foreground objects. Extensive experiments demonstrate that our method can exclude the interference of background motion and change, simultaneously improving the detection rate of small targets.

摘要

针对现有基于鲁棒主成分分析 (RPCA) 的块稀疏运动目标检测方法不适合动态背景和计算复杂度高的缺点,本文提出了一种基于运动显著性的视频序列两阶段前景点检测框架。在第一阶段,将观测图像序列视为低秩背景矩阵和稀疏异常值矩阵的和,然后通过快速 PCP(主成分追踪)利用 RPCA 方法求解分解。在第二阶段,根据谱残差和前景点区域的空间相关性得到稀疏前景点块。最后,通过快速 PCP 对块稀疏 RPCA 算法进行估计,以动态估计前景点并重建前景点。大量实验表明,该方法能够排除背景运动和变化的干扰,同时提高小目标的检测率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验