Suppr超能文献

预测住院康复的住院时长。

Predicting inpatient rehabilitation length of stay.

作者信息

Stineman M G, Williams S V

机构信息

Robert Wood Johnson Foundation Clinical Scholars' Program, Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia.

出版信息

Arch Phys Med Rehabil. 1990 Oct;71(11):881-7.

PMID:2222156
Abstract

Using standardized forms and predefined criteria, information was collected on all 1,238 patients admitted to the inpatient rehabilitation facility at our university hospital between August 1, 1980 and December 30, 1986. Data from 96% of these patients were used retrospectively to create a mathematic model, based on multiple linear regression, that predicts the patient's total rehabilitation length of stay (LOS). The model requires only information about the patient's admitting diagnosis, referral source, admission functional status, and date of admission. The model compared favorably with prospective estimates of LOS made independently by attending physicians at admission to rehabilitation. We conclude that such models could be used to facilitate management of rehabilitation units, forecast patient census, schedule unit personnel, set interim goals for LOS, and facilitate discharge planning. The delivery of rehabilitation services, like the delivery of other medical services, can be defined in part by objective, measurable patient characteristics.

摘要

利用标准化表格和预定义标准,收集了1980年8月1日至1986年12月30日期间入住我校医院住院康复科的所有1238例患者的信息。这些患者中96%的数据被用于回顾性地建立一个基于多元线性回归的数学模型,该模型可预测患者的康复总住院时间(LOS)。该模型仅需要有关患者入院诊断、转诊来源、入院功能状态和入院日期的信息。该模型与康复科主治医生在患者入院时独立做出的LOS前瞻性估计相比表现良好。我们得出结论,此类模型可用于促进康复单元的管理、预测患者人数、安排单元人员、设定LOS的中期目标以及促进出院计划。康复服务的提供,如同其他医疗服务的提供一样,部分可由客观、可衡量的患者特征来定义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验