Suppr超能文献

树突棘可塑性过程中的突触后信号传递。

Postsynaptic signaling during plasticity of dendritic spines.

机构信息

Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Trends Neurosci. 2012 Feb;35(2):135-43. doi: 10.1016/j.tins.2011.12.002. Epub 2012 Jan 3.

Abstract

Dendritic spines, small bulbous postsynaptic compartments emanating from neuronal dendrites, have been thought to serve as basic units of memory storage. Despite their small size (~0.1 femtoliter), thousands of species of proteins exist in the spine, including receptors, channels, scaffolding proteins and signaling enzymes. Biochemical signaling mediated by these molecules leads to morphological and functional plasticity of dendritic spines, and ultimately learning and memory in the brain. Here, we review new insights into the mechanisms underlying spine plasticity brought about by recent advances in imaging techniques to monitor molecular events in single dendritic spines. The activity of each protein displays a specific spatiotemporal pattern, coordinating downstream events at different microdomains to change the function and morphology of dendritic spines.

摘要

树突棘,是从神经元树突上延伸出的小的球状突触后隔室,被认为是记忆存储的基本单位。尽管它们的体积很小(约 0.1 飞升),但在棘突中存在着成千上万种蛋白质,包括受体、通道、支架蛋白和信号酶。这些分子介导的生化信号导致树突棘的形态和功能可塑性,最终导致大脑中的学习和记忆。在这里,我们回顾了近年来在单树突棘中监测分子事件的成像技术的进展带来的关于棘突可塑性的机制的新见解。每种蛋白质的活性都显示出特定的时空模式,协调不同微域中的下游事件,从而改变树突棘的功能和形态。

相似文献

1
Postsynaptic signaling during plasticity of dendritic spines.
Trends Neurosci. 2012 Feb;35(2):135-43. doi: 10.1016/j.tins.2011.12.002. Epub 2012 Jan 3.
2
Development and regulation of dendritic spine synapses.
Physiology (Bethesda). 2006 Feb;21:38-47. doi: 10.1152/physiol.00042.2005.
3
Biochemical Computation for Spine Structural Plasticity.
Neuron. 2015 Jul 1;87(1):63-75. doi: 10.1016/j.neuron.2015.05.043.
4
Plasticity of dendritic spines: subcompartmentalization of signaling.
Annu Rev Physiol. 2014;76:365-85. doi: 10.1146/annurev-physiol-021113-170400. Epub 2013 Nov 6.
5
Developmental plasticity of the dendritic compartment: focus on the cytoskeleton.
Adv Exp Med Biol. 2012;970:265-84. doi: 10.1007/978-3-7091-0932-8_12.
6
Spine microdomains for postsynaptic signaling and plasticity.
Trends Cell Biol. 2009 May;19(5):218-27. doi: 10.1016/j.tcb.2009.02.004. Epub 2009 Mar 28.
7
Biophysical Modeling of Synaptic Plasticity.
Annu Rev Biophys. 2024 Jul;53(1):397-426. doi: 10.1146/annurev-biophys-072123-124954. Epub 2024 Jun 28.
8
Dendritic spine dynamics.
Annu Rev Physiol. 2009;71:261-82. doi: 10.1146/annurev.physiol.010908.163140.
9
Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity.
Biophys J. 2017 Nov 21;113(10):2152-2159. doi: 10.1016/j.bpj.2017.07.029. Epub 2017 Aug 30.
10
Dendritic spines: Revisiting the physiological role.
Prog Neuropsychopharmacol Biol Psychiatry. 2019 Jun 8;92:161-193. doi: 10.1016/j.pnpbp.2019.01.005. Epub 2019 Jan 15.

引用本文的文献

1
KChIP3 fosters neuroinflammation and synaptic dysfunction in the 5XFAD mouse model of Alzheimer's disease.
J Neuroinflammation. 2025 Jun 19;22(1):160. doi: 10.1186/s12974-025-03426-2.
2
NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders.
Pharmaceuticals (Basel). 2024 Sep 25;17(10):1265. doi: 10.3390/ph17101265.
3
H-Ras induces exuberant dendritic protrusion growth in mature neurons regardless of cell type.
iScience. 2024 Jul 18;27(8):110535. doi: 10.1016/j.isci.2024.110535. eCollection 2024 Aug 16.
4
LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics.
Biophys Physicobiol. 2023 Jun 6;20(2):e200027. doi: 10.2142/biophysico.bppb-v20.0027. eCollection 2023.
5
Utilizing 2D-region-based CNNs for automatic dendritic spine detection in 3D live cell imaging.
Sci Rep. 2023 Nov 22;13(1):20497. doi: 10.1038/s41598-023-47070-3.
6
Megf10-related engulfment of excitatory postsynapses by astrocytes following severe brain injury.
CNS Neurosci Ther. 2023 Oct;29(10):2873-2883. doi: 10.1111/cns.14223. Epub 2023 Apr 20.
8
9
Post-Synapses in the Brain: Role of Dendritic and Spine Structures.
Biomedicines. 2022 Aug 2;10(8):1859. doi: 10.3390/biomedicines10081859.
10
Dendritic spine morphology regulates calcium-dependent synaptic weight change.
J Gen Physiol. 2022 Aug 1;154(8). doi: 10.1085/jgp.202112980. Epub 2022 Jul 12.

本文引用的文献

1
PDZ binding of TARPγ-8 controls synaptic transmission but not synaptic plasticity.
Nat Neurosci. 2011 Oct 16;14(11):1410-2. doi: 10.1038/nn.2952.
3
Loss of PSD-95 enrichment is not a prerequisite for spine retraction.
J Neurosci. 2011 Aug 24;31(34):12129-38. doi: 10.1523/JNEUROSCI.6662-10.2011.
5
Glutamate induces de novo growth of functional spines in developing cortex.
Nature. 2011 Jun 2;474(7349):100-4. doi: 10.1038/nature09986. Epub 2011 May 8.
6
Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
Annu Rev Biochem. 2011;80:357-73. doi: 10.1146/annurev-biochem-072909-094736.
7
PSD-95 is required to sustain the molecular organization of the postsynaptic density.
J Neurosci. 2011 Apr 27;31(17):6329-38. doi: 10.1523/JNEUROSCI.5968-10.2011.
8
The mechanisms underlying the spatial spreading of signaling activity.
Curr Opin Neurobiol. 2011 Apr;21(2):313-21. doi: 10.1016/j.conb.2011.02.008. Epub 2011 Mar 21.
9
Local, persistent activation of Rho GTPases during plasticity of single dendritic spines.
Nature. 2011 Apr 7;472(7341):100-4. doi: 10.1038/nature09823. Epub 2011 Mar 20.
10
The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP.
Neuron. 2011 Jan 13;69(1):132-46. doi: 10.1016/j.neuron.2010.12.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验