树突棘中生化信号的生物物理学:对突触可塑性的影响

Biophysics of Biochemical Signaling in Dendritic Spines: Implications in Synaptic Plasticity.

作者信息

Yasuda Ryohei

机构信息

Max Planck Florida Institute for Neuroscience, Jupiter, Florida.

出版信息

Biophys J. 2017 Nov 21;113(10):2152-2159. doi: 10.1016/j.bpj.2017.07.029. Epub 2017 Aug 30.

Abstract

Dendritic spines are mushroom-shaped postsynaptic compartments that host biochemical signal cascades important for synaptic plasticity and, ultimately, learning and memory. Signaling events in spines involve a signaling network composed of hundreds of signaling proteins interacting with each other extensively. Synaptic plasticity is typically induced by Ca elevation in spines, which activates a variety of signaling pathways. This leads to changes in the actin cytoskeleton and membrane dynamics, which in turn causes structural and functional changes of the spine. Recent studies have demonstrated that the activities of these proteins have a variety of spatiotemporal patterns, which orchestrate signaling activity in different subcellular compartments at different timescales. The diffusion and the decay kinetics of signaling molecules play important roles in determining the degree of their spatial spreading, and thereby the degree of the spine specificity of the signaling pathway.

摘要

树突棘是蘑菇状的突触后结构域,承载着对突触可塑性乃至学习和记忆至关重要的生化信号级联反应。树突棘中的信号事件涉及一个由数百种信号蛋白广泛相互作用组成的信号网络。突触可塑性通常由树突棘中的钙离子升高诱导,这会激活多种信号通路。这会导致肌动蛋白细胞骨架和膜动力学的变化,进而引起树突棘的结构和功能改变。最近的研究表明,这些蛋白质的活性具有多种时空模式,它们在不同的时间尺度上协调不同亚细胞结构域中的信号活动。信号分子的扩散和衰减动力学在决定其空间扩散程度,从而决定信号通路的树突棘特异性程度方面起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索