Suppr超能文献

染色体不稳定性和不受调控的增殖:一对不可避免的搭档。

Chromosome instability and deregulated proliferation: an unavoidable duo.

机构信息

London Regional Cancer Program, University of Western Ontario, ON, Canada.

出版信息

Cell Mol Life Sci. 2012 Jun;69(12):2009-24. doi: 10.1007/s00018-011-0910-4. Epub 2012 Jan 6.

Abstract

The concept that aneuploidy is a characteristic of malignant cells has long been known; however, the idea that aneuploidy is an active contributor to tumorigenesis, as opposed to being an associated phenotype, is more recent in its evolution. At the same time, we are seeing the emergence of novel roles for tumor suppressor genes and oncogenes in genome stability. These include the adenomatous polyposis coli gene (APC), p53, the retinoblastoma susceptibility gene (RB1), and Ras. Originally, many of these genes were thought to be tumor suppressive or oncogenic solely because of their role in proliferative control. Because of the frequency with which they are disrupted in cancer, chromosome instability caused by their dysfunction may be more central to tumorigenesis than previously thought. Therefore, this review will highlight how the proper function of cell cycle regulatory genes contributes to the maintenance of genome stability, and how their mutation in cancer obligatorily connects proliferation and chromosome instability.

摘要

长久以来,人们一直认为非整倍体是恶性细胞的特征;然而,非整倍体是肿瘤发生的主动促进因素,而不是相关表型,这一观点是最近才出现的。与此同时,我们也看到了肿瘤抑制基因和原癌基因在基因组稳定性方面的新作用。其中包括结肠腺瘤性息肉病基因(APC)、p53、视网膜母细胞瘤易感基因(RB1)和 Ras。最初,许多这些基因之所以被认为是抑癌基因或原癌基因,仅仅是因为它们在增殖控制中的作用。由于它们在癌症中经常被破坏,因此它们功能障碍引起的染色体不稳定性可能比以前认为的更为重要。因此,这篇综述将重点介绍细胞周期调节基因的正常功能如何有助于维持基因组稳定性,以及它们在癌症中的突变如何必然地将增殖和染色体不稳定性联系起来。

相似文献

1
Chromosome instability and deregulated proliferation: an unavoidable duo.
Cell Mol Life Sci. 2012 Jun;69(12):2009-24. doi: 10.1007/s00018-011-0910-4. Epub 2012 Jan 6.
2
Mechanisms of aneuploidy and its suppression by tumour suppressor proteins.
Swiss Med Wkly. 2011 Mar 8;141:w13170. doi: 10.4414/smw.2011.13170. eCollection 2011.
3
Gene mutations and aneuploidy: the instability that causes cancer.
Cell Cycle. 2004 Sep;3(9):1101-3. Epub 2004 Sep 15.
4
Aneuploidy and tumorigenesis.
Semin Cell Dev Biol. 2011 Aug;22(6):595-601. doi: 10.1016/j.semcdb.2011.03.002. Epub 2011 Mar 15.
6
The role of the NORE1A tumor suppressor in Oncogene-Induced Senescence.
Cancer Lett. 2017 Aug 1;400:30-36. doi: 10.1016/j.canlet.2017.04.030. Epub 2017 Apr 26.
7
Genomic instability and proliferation/survival pathways in RB1-deficient malignancies.
Adv Biol Regul. 2017 May;64:20-32. doi: 10.1016/j.jbior.2017.01.002. Epub 2017 Feb 8.
8
Cell-cycle Checkpoints and Aneuploidy on the Path to Cancer.
In Vivo. 2018 Jan-Feb;32(1):1-5. doi: 10.21873/invivo.11197.
9
ECRG2 disruption leads to centrosome amplification and spindle checkpoint defects contributing chromosome instability.
J Biol Chem. 2008 Feb 29;283(9):5888-98. doi: 10.1074/jbc.M708145200. Epub 2007 Dec 27.
10
The Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer.
J Cell Sci. 2012 Sep 15;125(Pt 18):4197-206. doi: 10.1242/jcs.107037. Epub 2012 Oct 23.

引用本文的文献

1
Genomic instability and eye diseases.
Adv Ophthalmol Pract Res. 2023 Apr 5;3(3):103-111. doi: 10.1016/j.aopr.2023.03.002. eCollection 2023 Aug-Sep.
2
Increased Tumor Intrinsic Growth Potential and Decreased Immune Function Orchestrate the Progression of Lung Adenocarcinoma.
Front Immunol. 2022 Jul 1;13:921761. doi: 10.3389/fimmu.2022.921761. eCollection 2022.
3
Potential Roles of the Retinoblastoma Protein in Regulating Genome Editing.
Front Cell Dev Biol. 2018 Jul 31;6:81. doi: 10.3389/fcell.2018.00081. eCollection 2018.
5
Residual expression of SMYD2 and SMYD3 is associated with the acquisition of complex karyotype in chronic lymphocytic leukemia.
Tumour Biol. 2016 Jul;37(7):9473-81. doi: 10.1007/s13277-016-4846-z. Epub 2016 Jan 20.
6
Naturally occurring reoviruses for human cancer therapy.
BMB Rep. 2015 Aug;48(8):454-60. doi: 10.5483/bmbrep.2015.48.8.076.
7
The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease.
Nat Rev Nephrol. 2015 Sep;11(9):515-34. doi: 10.1038/nrneph.2015.46. Epub 2015 Apr 14.
8
Replicating poxviruses for human cancer therapy.
J Microbiol. 2015 Apr;53(4):209-18. doi: 10.1007/s12275-015-5041-4. Epub 2015 Apr 8.
9
Chromosomal instability selects gene copy-number variants encoding core regulators of proliferation in ER+ breast cancer.
Cancer Res. 2014 Sep 1;74(17):4853-4863. doi: 10.1158/0008-5472.CAN-13-2664. Epub 2014 Jun 26.
10
Multi-layered cancer chromosomal instability phenotype.
Front Oncol. 2013 Dec 11;3:302. doi: 10.3389/fonc.2013.00302.

本文引用的文献

1
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
2
3
Mitotic chromosome condensation mediated by the retinoblastoma protein is tumor-suppressive.
Genes Dev. 2010 Jul 1;24(13):1351-63. doi: 10.1101/gad.1917610. Epub 2010 Jun 15.
4
Loss of pRB causes centromere dysfunction and chromosomal instability.
Genes Dev. 2010 Jul 1;24(13):1364-76. doi: 10.1101/gad.1917310. Epub 2010 Jun 15.
5
Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling.
Genes Dev. 2010 Jul 1;24(13):1377-88. doi: 10.1101/gad.580710. Epub 2010 Jun 15.
6
The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells.
Nat Cell Biol. 2010 May;12(5):492-9. doi: 10.1038/ncb2051. Epub 2010 Apr 4.
7
Trypanosoma cruzi in the treatment of mouse tumors.
J Natl Cancer Inst. 1947 Feb;7(4):189-97.
9
Proliferation of aneuploid human cells is limited by a p53-dependent mechanism.
J Cell Biol. 2010 Feb 8;188(3):369-81. doi: 10.1083/jcb.200905057. Epub 2010 Feb 1.
10
Mitotic chromosomal instability and cancer: mouse modelling of the human disease.
Nat Rev Cancer. 2010 Feb;10(2):102-15. doi: 10.1038/nrc2781.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验