Suppr超能文献

电压门控性钙通道的钙依赖性调节

Ca2+-dependent modulation of voltage-gated Ca2+ channels.

作者信息

Christel Carl, Lee Amy

机构信息

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Biochim Biophys Acta. 2012 Aug;1820(8):1243-52. doi: 10.1016/j.bbagen.2011.12.012. Epub 2011 Dec 24.

Abstract

BACKGROUND

Voltage-gated (Cav) Ca2+ channels are multi-subunit complexes that play diverse roles in a wide variety of tissues. A fundamental mechanism controlling Cav channel function involves the Ca2+ ions that permeate the channel pore. Ca2+ influx through Cav channels mediates feedback regulation to the channel that is both negative (Ca2+-dependent inactivation, CDI) and positive (Ca2+-dependent facilitation, CDF).

SCOPE OF REVIEW

This review highlights general mechanisms of CDI and CDF with an emphasis on how these processes have been studied electrophysiologically in native and heterologous expression systems.

MAJOR CONCLUSIONS

Electrophysiological analyses have led to detailed insights into the mechanisms and prevalence of CDI and CDF as Cav channel regulatory mechanisms. All Cav channel family members undergo some form of Ca2+-dependent feedback that relies on CaM or a related Ca2+ binding protein. Tremendous progress has been made in characterizing the role of CaM in CDI and CDF. Yet, what contributes to the heterogeneity of CDI/CDF in various cell-types and how Ca2+-dependent regulation of Cav channels controls Ca2+ signaling remain largely unexplored.

GENERAL SIGNIFICANCE

Ca2+ influx through Cav channels regulates diverse physiological events including excitation-contraction coupling in muscle, neurotransmitter and hormone release, and Ca2+-dependent gene transcription. Therefore, the mechanisms that regulate channels, such as CDI and CDF, can have a large impact on the signaling potential of excitable cells in various physiological contexts. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.

摘要

背景

电压门控(Cav)钙离子通道是多亚基复合物,在多种组织中发挥着不同作用。控制Cav通道功能的一个基本机制涉及渗透通道孔的钙离子。通过Cav通道的钙离子内流介导对通道的反馈调节,这种调节既有负反馈(钙离子依赖性失活,CDI)也有正反馈(钙离子依赖性易化,CDF)。

综述范围

本综述重点介绍CDI和CDF的一般机制,着重阐述这些过程在天然和异源表达系统中是如何通过电生理学方法进行研究的。

主要结论

电生理学分析使我们对CDI和CDF作为Cav通道调节机制的机制和普遍性有了详细的了解。所有Cav通道家族成员都经历某种形式的钙离子依赖性反馈,这种反馈依赖于钙调蛋白(CaM)或相关的钙离子结合蛋白。在确定CaM在CDI和CDF中的作用方面已经取得了巨大进展。然而,导致不同细胞类型中CDI/CDF异质性的因素以及Cav通道的钙离子依赖性调节如何控制钙离子信号传导在很大程度上仍未得到探索。

普遍意义

通过Cav通道的钙离子内流调节多种生理事件,包括肌肉中的兴奋 - 收缩偶联、神经递质和激素释放以及钙离子依赖性基因转录。因此,调节通道的机制,如CDI和CDF,在各种生理背景下对可兴奋细胞的信号传导潜力可能有很大影响。本文是名为“细胞内钙信号传导的生化、生物物理和遗传方法”的特刊的一部分。

相似文献

1
Ca2+-dependent modulation of voltage-gated Ca2+ channels.
Biochim Biophys Acta. 2012 Aug;1820(8):1243-52. doi: 10.1016/j.bbagen.2011.12.012. Epub 2011 Dec 24.
2
Measuring Ca2+-Dependent Modulation of Voltage-Gated Ca2+ Channels in HEK-293T Cells.
Cold Spring Harb Protoc. 2016 Sep 1;2016(9):pdb.prot087213. doi: 10.1101/pdb.prot087213.
3
Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.
Channels (Austin). 2010 Nov-Dec;4(6):459-74. doi: 10.4161/chan.4.6.12867.
5
6
Molecular determinants of Ca(2+)/calmodulin-dependent regulation of Ca(v)2.1 channels.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16059-64. doi: 10.1073/pnas.2237000100. Epub 2003 Dec 12.
7
Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.
J Physiol. 2016 Oct 1;594(19):5369-90. doi: 10.1113/JP272262. Epub 2016 Jul 5.
8
L-Type Ca Channel Regulation by Calmodulin and CaBP1.
Biomolecules. 2021 Dec 2;11(12):1811. doi: 10.3390/biom11121811.
9
Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels.
J Gen Physiol. 2007 May;129(5):385-401. doi: 10.1085/jgp.200709749. Epub 2007 Apr 16.
10
Decalmodulation of Cav1 channels by CaBPs.
Channels (Austin). 2016;10(1):33-7. doi: 10.1080/19336950.2015.1051273. Epub 2015 Jul 8.

引用本文的文献

1
Reduction of the Ca permeability of ligand-gated ion channels as a strategy against excitotoxicity.
Front Cell Neurosci. 2025 Jul 16;19:1617006. doi: 10.3389/fncel.2025.1617006. eCollection 2025.
2
Complex regulation of Cav2.2 N-type Ca2+ channels by Ca2+ and G-proteins.
PLoS One. 2025 Feb 7;20(2):e0314839. doi: 10.1371/journal.pone.0314839. eCollection 2025.
3
Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence.
Braz J Otorhinolaryngol. 2025 Jan-Feb;91(1):101512. doi: 10.1016/j.bjorl.2024.101512. Epub 2024 Sep 16.
4
The calcium transient coupled to the L-type calcium current attenuates cardiac alternans.
Front Physiol. 2024 Sep 27;15:1404886. doi: 10.3389/fphys.2024.1404886. eCollection 2024.
5
Calcium-Associated Proteins in Neuroregeneration.
Biomolecules. 2024 Feb 2;14(2):183. doi: 10.3390/biom14020183.
6
Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism.
CNS Neurol Disord Drug Targets. 2024;23(7):894-905. doi: 10.2174/1871527322666230622124618.
7
Regulation of Cardiac Cav1.2 Channels by Calmodulin.
Int J Mol Sci. 2023 Mar 29;24(7):6409. doi: 10.3390/ijms24076409.
8
Twenty Novel MicroRNAs in the Aqueous Humor of Pseudoexfoliation Glaucoma Patients.
Cells. 2023 Feb 24;12(5):737. doi: 10.3390/cells12050737.
9
Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder.
J Clin Med. 2023 Jan 17;12(3):738. doi: 10.3390/jcm12030738.
10
Calmodulin promotes a Ca -dependent conformational change in the C-terminal regulatory domain of Ca 1.2.
FEBS Lett. 2022 Nov;596(22):2974-2985. doi: 10.1002/1873-3468.14529. Epub 2022 Nov 8.

本文引用的文献

1
Hallmarks of the channelopathies associated with L-type calcium channels: a focus on the Timothy mutations in Ca(v)1.2 channels.
Biochimie. 2011 Dec;93(12):2080-6. doi: 10.1016/j.biochi.2011.05.015. Epub 2011 May 31.
2
CaBP1 regulates voltage-dependent inactivation and activation of Ca(V)1.2 (L-type) calcium channels.
J Biol Chem. 2011 Apr 22;286(16):13945-53. doi: 10.1074/jbc.M110.198424. Epub 2011 Mar 7.
3
CaMKII in myocardial hypertrophy and heart failure.
J Mol Cell Cardiol. 2011 Oct;51(4):468-73. doi: 10.1016/j.yjmcc.2011.01.012. Epub 2011 Jan 27.
4
Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation.
Channels (Austin). 2010 Nov-Dec;4(6):459-74. doi: 10.4161/chan.4.6.12867.
6
Loss of Ca(v)1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness.
Nat Neurosci. 2011 Jan;14(1):77-84. doi: 10.1038/nn.2694. Epub 2010 Dec 5.
7
Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth.
Cell Mol Neurobiol. 2010 Nov;30(8):1283-92. doi: 10.1007/s10571-010-9588-7. Epub 2010 Nov 23.
8
The ß subunit of voltage-gated Ca2+ channels.
Physiol Rev. 2010 Oct;90(4):1461-506. doi: 10.1152/physrev.00057.2009.
9
Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18694-9. doi: 10.1073/pnas.1009500107. Epub 2010 Oct 11.
10
Ca2+-dependent facilitation of Cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II.
J Neurosci. 2010 Apr 14;30(15):5125-35. doi: 10.1523/JNEUROSCI.4367-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验