Suppr超能文献

测量HEK-293T细胞中电压门控Ca2+通道的Ca2+依赖性调节

Measuring Ca2+-Dependent Modulation of Voltage-Gated Ca2+ Channels in HEK-293T Cells.

作者信息

Thomas Jessica R, Lee Amy

机构信息

Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242.

Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology, University of Iowa, Iowa City, Iowa 52242;

出版信息

Cold Spring Harb Protoc. 2016 Sep 1;2016(9):pdb.prot087213. doi: 10.1101/pdb.prot087213.

Abstract

Voltage-gated Ca(2+) (Cav) channels regulate a variety of biological processes, such as muscle contraction, gene expression, and neurotransmitter release. Cav channels are subject to diverse forms of regulation, including those involving the Ca(2+) ions that permeate the pore. High voltage-activated Cav channels undergo Ca(2+)-dependent inactivation (CDI) and facilitation (CDF), which can regulate processes such as cardiac rhythm and synaptic plasticity. CDI and CDF differ slightly between Cav1 (L-type) and Cav2 (P/Q-, N-, and R-type) channels. Human embryonic kidney cells transformed with SV40 large T-antigen (HEK-293T) are advantageous for studying CDI and CDF of a particular type of Cav channel. HEK-293T cells do not express endogenous Cav channels, but Cav channels can be expressed exogenously at high levels in these cells by transient transfection. This protocol describes how to characterize and analyze Ca(2+)-dependent modulation of recombinant Cav channels in HEK-293T cells.

摘要

电压门控性Ca(2+)(Cav)通道调节多种生物学过程,如肌肉收缩、基因表达和神经递质释放。Cav通道受到多种形式的调节,包括那些涉及渗透通道孔的Ca(2+)离子的调节。高电压激活的Cav通道会经历Ca(2+)依赖性失活(CDI)和易化(CDF),这可以调节诸如心律和突触可塑性等过程。Cav1(L型)通道和Cav2(P/Q型、N型和R型)通道之间的CDI和CDF略有不同。用SV40大T抗原转化的人胚肾细胞(HEK-293T)有利于研究特定类型Cav通道的CDI和CDF。HEK-293T细胞不表达内源性Cav通道,但通过瞬时转染,Cav通道可以在这些细胞中高水平地外源表达。本方案描述了如何表征和分析HEK-293T细胞中重组Cav通道的Ca(2+)依赖性调节。

相似文献

1
Measuring Ca2+-Dependent Modulation of Voltage-Gated Ca2+ Channels in HEK-293T Cells.
Cold Spring Harb Protoc. 2016 Sep 1;2016(9):pdb.prot087213. doi: 10.1101/pdb.prot087213.
2
Ca2+-dependent modulation of voltage-gated Ca2+ channels.
Biochim Biophys Acta. 2012 Aug;1820(8):1243-52. doi: 10.1016/j.bbagen.2011.12.012. Epub 2011 Dec 24.
3
4
5
Decoding of synaptic voltage waveforms by specific classes of recombinant high-threshold Ca(2+) channels.
J Physiol. 2003 Dec 1;553(Pt 2):473-88. doi: 10.1113/jphysiol.2003.051110. Epub 2003 Sep 18.
6
Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels.
J Gen Physiol. 2007 May;129(5):385-401. doi: 10.1085/jgp.200709749. Epub 2007 Apr 16.
7
Molecular moieties masking Ca-dependent facilitation of voltage-gated Ca2.2 Ca channels.
J Gen Physiol. 2018 Jan 2;150(1):83-94. doi: 10.1085/jgp.201711841. Epub 2017 Dec 5.
8
The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology.
Endocr Rev. 2006 Oct;27(6):621-76. doi: 10.1210/er.2005-0888. Epub 2006 Jul 25.
9
Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.
Cell Calcium. 2015 Nov;58(5):457-66. doi: 10.1016/j.ceca.2015.06.013. Epub 2015 Jul 2.

引用本文的文献

1
Chemical and Genetic Validation of an Essential Calcium Entry Channel of as a Therapeutic Target.
ACS Infect Dis. 2025 Jun 13;11(6):1741-1752. doi: 10.1021/acsinfecdis.5c00329. Epub 2025 Jun 3.
2
Complex regulation of Cav2.2 N-type Ca2+ channels by Ca2+ and G-proteins.
PLoS One. 2025 Feb 7;20(2):e0314839. doi: 10.1371/journal.pone.0314839. eCollection 2025.
3
Histamine via histamine H1 receptor enhances the muscarinic receptor-induced calcium response to acetylcholine in an enterochromaffin cell model.
Clin Exp Pharmacol Physiol. 2022 Oct;49(10):1059-1071. doi: 10.1111/1440-1681.13682. Epub 2022 Jul 13.
6
Allosteric regulators selectively prevent Ca-feedback of Ca and Na channels.
Elife. 2018 Sep 10;7:e35222. doi: 10.7554/eLife.35222.
7
CaBP1 regulates Ca1 L-type Ca channels and their coupling to neurite growth and gene transcription in mouse spiral ganglion neurons.
Mol Cell Neurosci. 2018 Apr;88:342-352. doi: 10.1016/j.mcn.2018.03.005. Epub 2018 Mar 13.
8
Molecular moieties masking Ca-dependent facilitation of voltage-gated Ca2.2 Ca channels.
J Gen Physiol. 2018 Jan 2;150(1):83-94. doi: 10.1085/jgp.201711841. Epub 2017 Dec 5.

本文引用的文献

1
More than a pore: ion channel signaling complexes.
J Neurosci. 2014 Nov 12;34(46):15159-69. doi: 10.1523/JNEUROSCI.3275-14.2014.
2
Calmodulin regulation (calmodulation) of voltage-gated calcium channels.
J Gen Physiol. 2014 Jun;143(6):679-92. doi: 10.1085/jgp.201311153.
3
Neuronal voltage-gated calcium channels: structure, function, and dysfunction.
Neuron. 2014 Apr 2;82(1):24-45. doi: 10.1016/j.neuron.2014.03.016.
4
Control of neuronal voltage-gated calcium ion channels from RNA to protein.
Trends Neurosci. 2013 Oct;36(10):598-609. doi: 10.1016/j.tins.2013.06.008. Epub 2013 Jul 30.
5
Ca2+-dependent modulation of voltage-gated Ca2+ channels.
Biochim Biophys Acta. 2012 Aug;1820(8):1243-52. doi: 10.1016/j.bbagen.2011.12.012. Epub 2011 Dec 24.
6
The ß subunit of voltage-gated Ca2+ channels.
Physiol Rev. 2010 Oct;90(4):1461-506. doi: 10.1152/physrev.00057.2009.
7
Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels.
Pflugers Arch. 2010 Jul;460(2):361-74. doi: 10.1007/s00424-010-0800-x. Epub 2010 Mar 7.
8
CaV2.1 channelopathies.
Pflugers Arch. 2010 Jul;460(2):375-93. doi: 10.1007/s00424-010-0802-8. Epub 2010 Mar 4.
10
Developmental activation of calmodulin-dependent facilitation of cerebellar P-type Ca2+ current.
J Neurosci. 2005 Sep 7;25(36):8282-94. doi: 10.1523/JNEUROSCI.2253-05.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验