Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18694-9. doi: 10.1073/pnas.1009500107. Epub 2010 Oct 11.
The dynamics, computational power, and strength of neural circuits are essential for encoding and processing information in the CNS and rely on short and long forms of synaptic plasticity. In a model system, residual calcium (Ca(2+)) in presynaptic terminals can act through neuronal Ca(2+) sensor proteins to cause Ca(2+)-dependent facilitation (CDF) of P/Q-type channels and induce short-term synaptic facilitation. However, whether this is a general mechanism of plasticity at intact central synapses and whether mutations associated with human disease affect this process have not been described to our knowledge. In this report, we find that, in both exogenous and native preparations, gain-of-function missense mutations underlying Familial Hemiplegic Migraine type 1 (FHM-1) occlude CDF of P/Q-type Ca(2+) channels. In FHM-1 mutant mice, the alteration of P/Q-type channel CDF correlates with reduced short-term synaptic facilitation at cerebellar parallel fiber-to-Purkinje cell synapses. Two-photon imaging suggests that P/Q-type channels at parallel fiber terminals in FHM-1 mice are in a basally facilitated state. Overall, the results provide evidence that FHM-1 mutations directly affect both P/Q-type channel CDF and synaptic plasticity and that together likely contribute toward the pathophysiology underlying FHM-1. The findings also suggest that P/Q-type channel CDF is an important mechanism required for normal synaptic plasticity at a fast synapse in the mammalian CNS.
神经回路的动力学、计算能力和强度对于中枢神经系统中的信息编码和处理至关重要,这依赖于短时间和长时间形式的突触可塑性。在模型系统中,突触前末梢中的残留钙(Ca(2+))可以通过神经元 Ca(2+) 传感器蛋白发挥作用,导致 P/Q 型通道的 Ca(2+) 依赖性易化(CDF),并诱导短期突触易化。然而,这种机制是否是完整中枢突触可塑性的一般机制,以及与人类疾病相关的突变是否会影响这个过程,据我们所知,尚未有描述。在本报告中,我们发现,在外源性和天然制剂中,导致家族性偏瘫性偏头痛 1 型(FHM-1)的功能获得性错义突变会阻断 P/Q 型 Ca(2+) 通道的 CDF。在 FHM-1 突变小鼠中,P/Q 型通道 CDF 的改变与小脑平行纤维到浦肯野细胞突触的短期突触易化减少相关。双光子成像表明,FHM-1 小鼠平行纤维末梢的 P/Q 型通道处于基础易化状态。总体而言,这些结果提供了证据表明,FHM-1 突变直接影响 P/Q 型通道 CDF 和突触可塑性,并且可能共同促成 FHM-1 的病理生理学。研究结果还表明,P/Q 型通道 CDF 是哺乳动物中枢神经系统中快速突触正常突触可塑性所必需的重要机制。