Suppr超能文献

一株嗜盐单胞菌 H11α-葡萄糖苷酶的特性及其在高效合成α-D-葡萄糖基甘油中的应用。

Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-D-glucosylglycerol.

机构信息

Nihon Shokuhin Kako Co., Ltd., Shizuoka, Japan.

出版信息

Appl Environ Microbiol. 2012 Mar;78(6):1836-45. doi: 10.1128/AEM.07514-11. Epub 2012 Jan 6.

Abstract

An α-glucosidase (HaG) with the following unique properties was isolated from Halomonas sp. strain H11: (i) high transglucosylation activity, (ii) activation by monovalent cations, and (iii) very narrow substrate specificity. The molecular mass of the purified HaG was estimated to be 58 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). HaG showed high hydrolytic activities toward maltose, sucrose, and p-nitrophenyl α-D-glucoside (pNPG) but to almost no other disaccharides or malto-oligosaccharides higher than trisaccharides. HaG showed optimum activity to maltose at 30°C and pH 6.5. Monovalent cations such as K(+), Rb(+), Cs(+), and NH(4)(+) increased the enzymatic activity to 2- to 9-fold of the original activity. These ions shifted the activity-pH profile to the alkaline side. The optimum temperature rose to 40°C in the presence of 10 mM NH(4)(+), although temperature stability was not affected. The apparent K(m) and k(cat) values for maltose and pNPG were significantly improved by monovalent cations. Surprisingly, k(cat)/K(m) for pNPG increased 372- to 969-fold in their presence. HaG used some alcohols as acceptor substrates in transglucosylation and was useful for efficient synthesis of α-d-glucosylglycerol. The efficiency of the production level was superior to that of the previously reported enzyme Aspergillus niger α-glucosidase in terms of small amounts of by-products. Sequence analysis of HaG revealed that it was classified in glycoside hydrolase family 13. Its amino acid sequence showed high identities, 60%, 58%, 57%, and 56%, to Xanthomonas campestris WU-9701 α-glucosidase, Xanthomonas campestris pv. raphani 756C oligo-1,6-glucosidase, Pseudomonas stutzeri DSM 4166 oligo-1,6-glucosidase, and Agrobacterium tumefaciens F2 α-glucosidase, respectively.

摘要

从盐单胞菌属 H11 菌株中分离到一种具有以下独特性质的α-葡萄糖苷酶(HaG):(i)高转葡糖苷活性,(ii)一价阳离子激活,和(iii)非常窄的底物特异性。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)纯化的 HaG 的分子量估计为 58 kDa。HaG 对麦芽糖、蔗糖和对硝基苯-α-D-葡萄糖苷(pNPG)具有高水解活性,但对其他二糖或高于三糖的麦芽低聚糖几乎没有活性。HaG 在 30°C 和 pH 6.5 下对麦芽糖表现出最佳活性。一价阳离子,如 K(+)、Rb(+)、Cs(+)和 NH(4)(+),将酶活性提高到原始活性的 2-9 倍。这些离子将活性-pH 曲线移向碱性侧。在 10 mM NH(4)(+)存在下,最适温度升高到 40°C,尽管温度稳定性没有受到影响。一价阳离子显著改善了麦芽糖和 pNPG 的表观 K(m)和 k(cat)值。令人惊讶的是,它们的存在使 pNPG 的 k(cat)/K(m)提高了 372-969 倍。HaG 在转葡糖苷化中用作一些醇的受体底物,并且在高效合成α-d-葡萄糖基甘油方面非常有用。从副产物的少量来看,生产水平的效率优于先前报道的黑曲霉α-葡萄糖苷酶。HaG 的序列分析表明,它被归类于糖苷水解酶家族 13。它的氨基酸序列与野油菜黄单胞菌 WU-9701α-葡萄糖苷酶、野油菜黄单胞菌 pv. 萝卜 756C 寡-1,6-葡糖苷酶、恶臭假单胞菌 DSM 4166 寡-1,6-葡糖苷酶和根癌农杆菌 F2α-葡萄糖苷酶的同源性分别为 60%、58%、57%和 56%。

相似文献

2
Crystallization and preliminary X-ray crystallographic analysis of α-glucosidase HaG from Halomonas sp. strain H11.
Acta Crystallogr F Struct Biol Commun. 2014 Apr;70(Pt 4):464-6. doi: 10.1107/S2053230X14001940. Epub 2014 Mar 25.
3
Purification and biochemical characterization of a novel alpha-glucosidase from Aspergillus niveus.
Antonie Van Leeuwenhoek. 2009 Nov;96(4):569-78. doi: 10.1007/s10482-009-9372-1.
4
Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism.
Acta Crystallogr D Biol Crystallogr. 2015 Jun;71(Pt 6):1382-91. doi: 10.1107/S139900471500721X. Epub 2015 May 23.
5
Purification and characterization of a novel α-glucosidase from Malbranchea cinnamomea.
Biotechnol Lett. 2015 Jun;37(6):1279-86. doi: 10.1007/s10529-015-1798-0. Epub 2015 Feb 28.
6
Purification and characterization of alpha-glucosidase from Torulaspora pretoriensis YK-1.
Biosci Biotechnol Biochem. 1993 Nov;57(11):1902-5. doi: 10.1271/bbb.57.1902.
8
Expression, purification and characterization of recombinant α-glucosidase in Pichia pastoris.
Folia Microbiol (Praha). 2010 Nov;55(6):582-7. doi: 10.1007/s12223-010-0093-7. Epub 2011 Jan 21.
9
Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2+-dependent phospho-alpha-glucosidase(s).
J Biol Chem. 2004 Jan 9;279(2):1553-61. doi: 10.1074/jbc.M310733200. Epub 2003 Oct 21.
10
Genetic and biochemical characterization of an oligo-α-1,6-glucosidase from Lactobacillus plantarum.
Int J Food Microbiol. 2017 Apr 4;246:32-39. doi: 10.1016/j.ijfoodmicro.2017.01.021. Epub 2017 Feb 1.

引用本文的文献

1
A Broad-Spectrum α-Glucosidase of Glycoside Hydrolase Family 13 from Marinovum sp., a Member of the Roseobacter Clade.
Appl Biochem Biotechnol. 2024 Sep;196(9):6059-6071. doi: 10.1007/s12010-023-04820-3. Epub 2024 Jan 5.
2
Midgut membrane protein BmSUH facilitates Bombyx mori nucleopolyhedrovirus oral infection.
PLoS Pathog. 2022 Nov 16;18(11):e1010938. doi: 10.1371/journal.ppat.1010938. eCollection 2022 Nov.
3
Enzymatic synthesis of novel fructosylated compounds by Ffase from in green solvents.
RSC Adv. 2021 Jul 9;11(39):24312-24319. doi: 10.1039/d1ra01391b. eCollection 2021 Jul 6.
5
Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast .
Int J Mol Sci. 2019 Dec 31;21(1):297. doi: 10.3390/ijms21010297.
7
Production and biochemical characterization of α-glucosidase from ITV-01 isolated from sugar cane bagasse.
3 Biotech. 2018 Jan;8(1):7. doi: 10.1007/s13205-017-1029-6. Epub 2017 Dec 11.
8
α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions.
Cell Mol Life Sci. 2016 Jul;73(14):2727-51. doi: 10.1007/s00018-016-2247-5. Epub 2016 Apr 30.
9
Crystallization and preliminary X-ray crystallographic analysis of α-glucosidase HaG from Halomonas sp. strain H11.
Acta Crystallogr F Struct Biol Commun. 2014 Apr;70(Pt 4):464-6. doi: 10.1107/S2053230X14001940. Epub 2014 Mar 25.

本文引用的文献

2
Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.
Carbohydr Res. 2011 Sep 27;346(13):1860-7. doi: 10.1016/j.carres.2011.06.024. Epub 2011 Jun 24.
4
Compatible solute biosynthesis in cyanobacteria.
Environ Microbiol. 2011 Mar;13(3):551-62. doi: 10.1111/j.1462-2920.2010.02366.x. Epub 2010 Nov 5.
5
A new bioinformatics analysis tools framework at EMBL-EBI.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W695-9. doi: 10.1093/nar/gkq313. Epub 2010 May 3.
7
Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic.
Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2768-2774. doi: 10.1099/ijs.0.020628-0. Epub 2010 Jan 8.
9
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
10
Crystal structure of GH13 alpha-glucosidase GSJ from one of the deepest sea bacteria.
Proteins. 2008 Oct;73(1):126-33. doi: 10.1002/prot.22044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验