Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland.
J Struct Biol. 2012 Feb;177(2):233-8. doi: 10.1016/j.jsb.2011.12.014. Epub 2011 Dec 29.
Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state.
全场 X 射线显微镜是一种用于三维观察生物系统的有价值的工具。在软 X 射线区域,细胞器可以在单个细胞中可视化,而硬 X 射线显微镜则擅长于对较大的复杂生物组织进行成像。这些仪器的视场通常是空间分辨率的 10^3 倍。我们利用硬 X 射线亚微米成像的优势,并通过扩大有效视场来匹配样品的大小,从而扩展标准方法。我们表明,即使在纳米尺度下,使用适度的辐射剂量,也可以实现对生物系统的全局断层扫描,其视场超过几倍。我们解决了 TOMCAT 全场显微镜的性能问题和局限性,以及更一般的泽尼克相位对比成像问题。我们研究了两个具有生物学意义的系统。第一个是已知最大的细菌(纳米比亚硫珠菌),第二个是一种小型多足动物(节肢动物 sp.)。这两个例子都说明了独特的、基于结构的宽带全场显微镜的能力,可以在纳米尺度上获取生物系统的 3D 结构细节,同时避免复杂的样品制备,甚至可以保持样品环境接近自然状态。