Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts 02215, USA.
Clin Cancer Res. 2012 Mar 1;18(5):1323-33. doi: 10.1158/1078-0432.CCR-11-2271. Epub 2012 Jan 6.
We aimed to validate and improve prognostic signatures for high-risk urothelial carcinoma of the bladder.
We evaluated microarray data from 93 patients with bladder cancer managed by radical cystectomy to determine gene expression patterns associated with clinical and prognostic variables. We compared our results with published bladder cancer microarray data sets comprising 578 additional patients and with 49 published gene signatures from multiple cancer types. Hierarchical clustering was utilized to identify subtypes associated with differences in survival. We then investigated whether the addition of survival-associated gene expression information to a validated postcystectomy nomogram utilizing clinical and pathologic variables improves prediction of recurrence.
Multiple markers for muscle invasive disease with highly significant expression differences in multiple data sets were identified, such as fibronectin 1 (FN1), NNMT, POSTN, and SMAD6. We identified signatures associated with pathologic stage and the likelihood of developing metastasis and death from bladder cancer, as well as with two distinct clustering subtypes of bladder cancer. Our novel signature correlated with overall survival in multiple independent data sets, significantly improving the prediction concordance of standard staging in all data sets [mean ΔC-statistic: 0.14; 95% confidence interval (CI), 0.01-0.27; P < 0.001]. Tested in our patient cohort, it significantly enhanced the performance of a postoperative survival nomogram (ΔC-statistic: 0.08, 95% CI, -0.04-0.20; P < 0.005).
Prognostic information obtained from gene expression data can aid in posttreatment prediction of bladder cancer recurrence. Our findings require further validation in external cohorts and prospectively in a clinical trial setting.
我们旨在验证和改进高危膀胱癌的预后标志物。
我们评估了 93 例接受根治性膀胱切除术治疗的膀胱癌患者的基因表达数据,以确定与临床和预后变量相关的基因表达模式。我们将我们的结果与包含 578 例额外患者的已发表膀胱癌基因芯片数据集以及来自多种癌症类型的 49 个已发表基因标志物进行了比较。采用层次聚类来识别与生存差异相关的亚型。然后,我们研究了将与生存相关的基因表达信息添加到利用临床和病理变量验证的术后列线图中是否可以改善对复发的预测。
在多个数据集中,我们发现了多个与肌肉浸润性疾病相关的具有显著表达差异的标志物,如纤维连接蛋白 1(FN1)、NNMT、POSTN 和 SMAD6。我们确定了与病理分期以及发生转移和膀胱癌死亡的可能性相关的标志物,以及膀胱癌的两种不同聚类亚型。我们的新标志物与多个独立数据集的总生存率相关,显著提高了所有数据集的标准分期预测一致性[平均ΔC 统计量:0.14;95%置信区间(CI),0.01-0.27;P < 0.001]。在我们的患者队列中进行测试时,它显著提高了术后生存列线图的性能(ΔC 统计量:0.08,95%CI,-0.04-0.20;P < 0.005)。
从基因表达数据中获得的预后信息可辅助膀胱癌复发后的治疗预测。我们的研究结果需要在外部队列和前瞻性临床试验中进一步验证。