Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA.
Stat Med. 2011 May 10;30(10):1105-17. doi: 10.1002/sim.4154. Epub 2011 Jan 13.
For modern evidence-based medicine, a well thought-out risk scoring system for predicting the occurrence of a clinical event plays an important role in selecting prevention and treatment strategies. Such an index system is often established based on the subject's 'baseline' genetic or clinical markers via a working parametric or semi-parametric model. To evaluate the adequacy of such a system, C-statistics are routinely used in the medical literature to quantify the capacity of the estimated risk score in discriminating among subjects with different event times. The C-statistic provides a global assessment of a fitted survival model for the continuous event time rather than focussing on the prediction of bit-year survival for a fixed time. When the event time is possibly censored, however, the population parameters corresponding to the commonly used C-statistics may depend on the study-specific censoring distribution. In this article, we present a simple C-statistic without this shortcoming. The new procedure consistently estimates a conventional concordance measure which is free of censoring. We provide a large sample approximation to the distribution of this estimator for making inferences about the concordance measure. Results from numerical studies suggest that the new procedure performs well in finite sample.
对于现代循证医学,一个精心设计的风险评分系统对于预测临床事件的发生起着重要作用,有助于选择预防和治疗策略。这样的指标体系通常是基于研究对象的“基线”遗传或临床标志物,通过工作参数或半参数模型建立的。为了评估该系统的充分性,C 统计量在医学文献中被常规用于量化估计风险评分在区分不同事件时间的研究对象方面的能力。C 统计量为拟合生存模型提供了对连续事件时间的整体评估,而不是专注于固定时间的位年生存率预测。然而,当事件时间可能被删失时,通常使用的 C 统计量所对应的总体参数可能取决于研究特定的删失分布。在本文中,我们提出了一种简单的 C 统计量,没有这种缺点。新方法一致地估计了一种常规的一致性度量,该度量不受删失的影响。我们提供了一个大样本逼近这个估计量的分布,以便对一致性度量进行推断。数值研究的结果表明,新方法在有限样本中表现良好。