Suppr超能文献

基于删失生存数据评估风险预测方法整体充分性的 C 统计量。

On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.

机构信息

Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA.

出版信息

Stat Med. 2011 May 10;30(10):1105-17. doi: 10.1002/sim.4154. Epub 2011 Jan 13.

Abstract

For modern evidence-based medicine, a well thought-out risk scoring system for predicting the occurrence of a clinical event plays an important role in selecting prevention and treatment strategies. Such an index system is often established based on the subject's 'baseline' genetic or clinical markers via a working parametric or semi-parametric model. To evaluate the adequacy of such a system, C-statistics are routinely used in the medical literature to quantify the capacity of the estimated risk score in discriminating among subjects with different event times. The C-statistic provides a global assessment of a fitted survival model for the continuous event time rather than focussing on the prediction of bit-year survival for a fixed time. When the event time is possibly censored, however, the population parameters corresponding to the commonly used C-statistics may depend on the study-specific censoring distribution. In this article, we present a simple C-statistic without this shortcoming. The new procedure consistently estimates a conventional concordance measure which is free of censoring. We provide a large sample approximation to the distribution of this estimator for making inferences about the concordance measure. Results from numerical studies suggest that the new procedure performs well in finite sample.

摘要

对于现代循证医学,一个精心设计的风险评分系统对于预测临床事件的发生起着重要作用,有助于选择预防和治疗策略。这样的指标体系通常是基于研究对象的“基线”遗传或临床标志物,通过工作参数或半参数模型建立的。为了评估该系统的充分性,C 统计量在医学文献中被常规用于量化估计风险评分在区分不同事件时间的研究对象方面的能力。C 统计量为拟合生存模型提供了对连续事件时间的整体评估,而不是专注于固定时间的位年生存率预测。然而,当事件时间可能被删失时,通常使用的 C 统计量所对应的总体参数可能取决于研究特定的删失分布。在本文中,我们提出了一种简单的 C 统计量,没有这种缺点。新方法一致地估计了一种常规的一致性度量,该度量不受删失的影响。我们提供了一个大样本逼近这个估计量的分布,以便对一致性度量进行推断。数值研究的结果表明,新方法在有限样本中表现良好。

相似文献

1
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.
Stat Med. 2011 May 10;30(10):1105-17. doi: 10.1002/sim.4154. Epub 2011 Jan 13.
2
On comparing 2 correlated C indices with censored survival data.
Stat Med. 2017 Nov 10;36(25):4041-4049. doi: 10.1002/sim.7414. Epub 2017 Jul 31.
3
Concordance indices with left-truncated and right-censored data.
Biometrics. 2023 Sep;79(3):1624-1634. doi: 10.1111/biom.13714. Epub 2022 Jul 11.
4
Estimating subject-specific dependent competing risk profile with censored event time observations.
Biometrics. 2011 Jun;67(2):427-35. doi: 10.1111/j.1541-0420.2010.01456.x. Epub 2010 Jul 9.
5
Quantifying discrimination of Framingham risk functions with different survival C statistics.
Stat Med. 2012 Jul 10;31(15):1543-53. doi: 10.1002/sim.4508. Epub 2012 Feb 17.
8
Factorial analyses of treatment effects under independent right-censoring.
Stat Methods Med Res. 2020 Feb;29(2):325-343. doi: 10.1177/0962280219831316. Epub 2019 Mar 5.
9
Investigating the appropriateness of different concordance measures in a time-to-event setting.
Pharm Stat. 2020 Nov;19(6):763-775. doi: 10.1002/pst.2029. Epub 2020 May 21.
10
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.

引用本文的文献

1
Bayesian integration of longitudinal and survival outcomes in Alzheimer's disease prediction.
Alzheimers Dement. 2025 Sep;21(9):e70094. doi: 10.1002/alz.70094.
6

本文引用的文献

1
Evaluating subject-level incremental values of new markers for risk classification rule.
Lifetime Data Anal. 2013 Oct;19(4):547-67. doi: 10.1007/s10985-013-9272-6. Epub 2013 Jun 27.
2
On the prognostic value of survival models with application to gene expression signatures.
Stat Med. 2010 Mar 30;29(7-8):818-29. doi: 10.1002/sim.3768.
3
An updated catalog of prostate cancer predictive tools.
Cancer. 2008 Dec 1;113(11):3075-99. doi: 10.1002/cncr.23908.
4
General cardiovascular risk profile for use in primary care: the Framingham Heart Study.
Circulation. 2008 Feb 12;117(6):743-53. doi: 10.1161/CIRCULATIONAHA.107.699579. Epub 2008 Jan 22.
5
A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study.
Ann Intern Med. 2008 Jan 15;148(2):102-10. doi: 10.7326/0003-4819-148-2-200801150-00005.
7
Estimation of time-dependent area under the ROC curve for long-term risk prediction.
Stat Med. 2006 Oct 30;25(20):3474-86. doi: 10.1002/sim.2299.
8
The sensitivity and specificity of markers for event times.
Biostatistics. 2006 Apr;7(2):182-97. doi: 10.1093/biostatistics/kxi047. Epub 2005 Aug 3.
9
Survival model predictive accuracy and ROC curves.
Biometrics. 2005 Mar;61(1):92-105. doi: 10.1111/j.0006-341X.2005.030814.x.
10
Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3738-43. doi: 10.1073/pnas.0409462102. Epub 2005 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验