Unidad Academica de Matematicas, Universidad Autonoma de Guerrero, Av. Lazaro Cardenas C.U., Chilpancingo, Guerrero, Mexico.
Math Biosci Eng. 2012 Jan 1;9(1):165-74. doi: 10.3934/mbe.2012.9.165.
A delayed vector-bias model for malaria transmission with incubation period in mosquitoes is studied. The delay t corresponds to the time necessary for a latently infected vector to become an infectious vector. We prove that the global stability is completely determined by the threshold parameter, R₀(τ). If R₀(τ) ≥ 1, the disease-free equilibrium is globally asymptotically stable. If R₀(τ) > 1 a unique endemic equilibrium exists and is globally asymptotically stable. We apply our results to Ross-MacDonald malaria models with an incubation period (extrinsic or intrinsic).
研究了一种具有蚊虫潜伏期的疟疾传播时滞向量偏差模型。延迟时间 t 对应于潜伏感染的媒介成为传染性媒介所需的时间。我们证明了全局稳定性完全由阈值参数 R₀(τ)决定。如果 R₀(τ)≥1,则无病平衡点全局渐近稳定。如果 R₀(τ)>1,则存在唯一的地方平衡点且全局渐近稳定。我们将结果应用于具有潜伏期(外在或内在)的 Ross-MacDonald 疟疾模型。