Department of Physiology and Biophysics, University of Washington School of Medicine, Box 357290, Seattle, Washington 98195-7290, USA.
Nature. 2012 Jan 9;481(7382):530-3. doi: 10.1038/nature10735.
The KCNH family of ion channels, comprising ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like (ELK) K(+)-channel subfamilies, is crucial for repolarization of the cardiac action potential, regulation of neuronal excitability and proliferation of tumour cells. The carboxy-terminal region of KCNH channels contains a cyclic-nucleotide-binding homology domain (CNBHD) and C-linker that couples the CNBHD to the pore. The C-linker/CNBHD is essential for proper function and trafficking of ion channels in the KCNH family. However, despite the importance of the C-linker/CNBHD for the function of KCNH channels, the structural basis of ion-channel regulation by the C-linker/CNBHD is unknown. Here we report the crystal structure of the C-linker/CNBHD of zebrafish ELK channels at 2.2-Å resolution. Although the overall structure of the C-linker/CNBHD of ELK channels is similar to the cyclic-nucleotide-binding domain (CNBD) structure of the related hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channels, there are marked differences. Unlike the CNBD of HCN, the CNBHD of ELK displays a negatively charged electrostatic profile that explains the lack of binding and regulation of KCNH channels by cyclic nucleotides. Instead of cyclic nucleotide, the binding pocket is occupied by a short β-strand. Mutations of the β-strand shift the voltage dependence of activation to more depolarized voltages, implicating the β-strand as an intrinsic ligand for the CNBHD of ELK channels. In both ELK and HCN channels the C-linker is the site of virtually all of the intersubunit interactions in the C-terminal region. However, in the zebrafish ELK structure there is a reorientation in the C-linker so that the subunits form dimers instead of tetramers, as observed in HCN channels. These results provide a structural framework for understanding the regulation of ion channels in the KCNH family by the C-linker/CNBHD and may guide the design of specific drugs.
钾离子通道超家族(KCNH)由缝隙连接调节钾离子通道(EAG)、EAG 相关基因(ERG)和 EAG 样(ELK)亚家族组成,对于心脏动作电位的复极化、神经元兴奋性的调节以及肿瘤细胞的增殖至关重要。钾离子通道羧基端区域包含环核苷酸结合同源结构域(CNBHD)和 C 链接区,该 C 链接区将 CNBHD 与孔连接起来。C 链接区/CNBHD 对于 KCNH 家族离子通道的正常功能和运输至关重要。然而,尽管 C 链接区/CNBHD 对 KCNH 通道的功能很重要,但 C 链接区/CNBHD 调节离子通道的结构基础尚不清楚。在这里,我们报道了斑马鱼 ELK 通道 C 链接区/CNBHD 的晶体结构,分辨率为 2.2Å。尽管 ELK 通道 C 链接区/CNBHD 的整体结构与相关的超极化激活环核苷酸调节(HCN)通道的环核苷酸结合结构域(CNBD)结构相似,但存在明显差异。与 HCN 的 CNBD 不同,ELK 的 CNBHD 显示出带负电荷的静电轮廓,这解释了 KCNH 通道缺乏与环核苷酸的结合和调节。代替环核苷酸,结合口袋被一个短的 β-链占据。β-链突变会将激活的电压依赖性转移到更去极化的电压,这表明β-链是 ELK 通道 CNBHD 的内在配体。在 ELK 和 HCN 通道中,C 链接区是 C 端区域几乎所有亚基间相互作用的位点。然而,在斑马鱼 ELK 结构中,C 链接区发生了重新定向,使得亚基形成二聚体而不是 HCN 通道中观察到的四聚体。这些结果为理解 C 链接区/CNBHD 对 KCNH 家族离子通道的调节提供了结构框架,并可能指导特定药物的设计。