Suppr超能文献

骨关节炎啮齿动物模型中软骨和骨形态、活性氧及血管生成的定量成像

Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis.

作者信息

Xie LiQin, Lin Angela S P, Kundu Kousik, Levenston Marc E, Murthy Niren, Guldberg Robert E

机构信息

Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Arthritis Rheum. 2012 Jun;64(6):1899-908. doi: 10.1002/art.34370. Epub 2012 Jan 9.

Abstract

OBJECTIVE

To assess temporal changes in cartilage and bone morphology, reactive oxygen species (ROS), and vascularization in rats with monosodium iodoacetate (MIA)-induced osteoarthritis (OA), using advanced imaging methodologies.

METHODS

Right knees of 8-week-old male Wistar rats were injected with 1 mg MIA in 50 μl saline and left knees were injected with 50 μl saline as controls. After 1, 2, and 3 weeks (n = 5 at each time point), changes in cartilage morphology and composition were quantified using equilibrium partitioning of an ionic contrast agent microfocal computed tomography (μCT), and changes in subchondral and trabecular bone were assessed by standard μCT. ROS were characterized by in vivo fluorescence imaging at 1, 11, and 21 days (n = 5 at each time point). Three weeks following fluorescence imaging, alterations in knee joint vascularity were quantified with μCT after perfusion of a vascular contrast agent.

RESULTS

Femoral cartilage volume, thickness, and proteoglycan content were significantly decreased in MIA-injected knees compared with control knees, accompanied by loss of trabecular bone and erosion of subchondral bone surface. ROS quantities were significantly increased 1 day after MIA injection and subsequently decreased gradually, having returned to normal by 21 days. Vascularity in whole knees and distal femora was significantly increased at 21 days after MIA injection.

CONCLUSION

Contrast-enhanced μCT and fluorescence imaging were combined to characterize articular cartilage, subchondral bone, vascularization, and ROS, providing unprecedented 3-dimensional joint imaging and quantification in multiple tissues during OA progression. These advanced imaging techniques have the potential to become standardized methods for comprehensive evaluation of articular joint degeneration and evaluation of therapeutic efficacy.

摘要

目的

使用先进的成像方法评估碘乙酸钠(MIA)诱导的骨关节炎(OA)大鼠软骨和骨形态、活性氧(ROS)及血管生成的时间变化。

方法

向8周龄雄性Wistar大鼠的右膝注射50 μl盐水中含1 mg MIA,左膝注射50 μl盐水作为对照。在1、2和3周后(每个时间点n = 5),使用离子造影剂微焦点计算机断层扫描(μCT)的平衡分配法对软骨形态和组成的变化进行定量,并通过标准μCT评估软骨下骨和小梁骨的变化。在第1、11和21天通过体内荧光成像对ROS进行表征(每个时间点n = 5)。荧光成像后3周,在灌注血管造影剂后用μCT对膝关节血管生成的改变进行定量。

结果

与对照膝相比,注射MIA的膝部股骨软骨体积、厚度和蛋白聚糖含量显著降低,伴有小梁骨丢失和软骨下骨表面侵蚀。MIA注射后1天ROS数量显著增加,随后逐渐减少,到21天时恢复正常。MIA注射后21天,全膝关节和股骨远端的血管生成显著增加。

结论

将对比增强μCT和荧光成像相结合,以表征关节软骨、软骨下骨、血管生成和ROS,在OA进展过程中提供了前所未有的多组织三维关节成像和定量分析。这些先进的成像技术有可能成为全面评估关节退变和评估治疗效果的标准化方法。

相似文献

4
Localized 3D analysis of cartilage composition and morphology in small animal models of joint degeneration.
Osteoarthritis Cartilage. 2013 Aug;21(8):1132-41. doi: 10.1016/j.joca.2013.05.018. Epub 2013 Jun 6.
8
Fucoidan Prevents the Progression of Osteoarthritis in Rats.
J Med Food. 2015 Sep;18(9):1032-41. doi: 10.1089/jmf.2014.3334. Epub 2015 Jul 21.
9
Quantitative Knee Arthrography in a Large Animal Model of Osteoarthritis Using Photon-Counting Detector CT.
Invest Radiol. 2020 Jun;55(6):349-356. doi: 10.1097/RLI.0000000000000648.
10
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model.
Osteoarthritis Cartilage. 2014 Aug;22(8):1176-85. doi: 10.1016/j.joca.2014.05.020. Epub 2014 Jun 10.

引用本文的文献

2
Engineering next-generation oxygen-generating scaffolds to enhance bone regeneration.
Trends Biotechnol. 2025 Mar;43(3):540-554. doi: 10.1016/j.tibtech.2024.09.006. Epub 2024 Sep 28.
4
Calcified cartilage revealed in whole joint by X-ray phase contrast imaging.
Osteoarthr Cartil Open. 2021 Apr 26;3(2):100168. doi: 10.1016/j.ocarto.2021.100168. eCollection 2021 Jun.
5
PTHrP promotes subchondral bone formation in TMJ-OA.
Int J Oral Sci. 2022 Jul 19;14(1):37. doi: 10.1038/s41368-022-00189-x.
8
Synovial fluid proteome profile of surgical versus chemical induced osteoarthritis in rabbits.
PeerJ. 2022 Feb 23;10:e12897. doi: 10.7717/peerj.12897. eCollection 2022.
10
The Implication of Reactive Oxygen Species and Antioxidants in Knee Osteoarthritis.
Antioxidants (Basel). 2021 Jun 21;10(6):985. doi: 10.3390/antiox10060985.

本文引用的文献

1
The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rat.
Osteoarthritis Cartilage. 2010 Oct;18 Suppl 3:S24-34. doi: 10.1016/j.joca.2010.05.030.
2
The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse.
Osteoarthritis Cartilage. 2010 Oct;18 Suppl 3:S17-23. doi: 10.1016/j.joca.2010.05.025.
3
Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.
Ann N Y Acad Sci. 2010 Mar;1192:230-7. doi: 10.1111/j.1749-6632.2009.05240.x.
4
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-microCT.
Osteoarthritis Cartilage. 2010 Jan;18(1):65-72. doi: 10.1016/j.joca.2009.07.014. Epub 2009 Sep 1.
5
The effects of bone turnover rate on subchondral trabecular bone structure and cartilage damage in the osteoarthritis rat model.
Rheumatol Int. 2010 Jul;30(9):1165-71. doi: 10.1007/s00296-009-1118-x. Epub 2009 Aug 27.
6
OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed?
Osteoarthritis Cartilage. 2009 Nov;17(11):1393-401. doi: 10.1016/j.joca.2009.04.009. Epub 2009 Apr 22.
8
Etiopathogenesis of osteoarthritis.
Med Clin North Am. 2009 Jan;93(1):1-24, xv. doi: 10.1016/j.mcna.2008.08.009.
9
Quantitative assessment of articular cartilage morphology via EPIC-microCT.
Osteoarthritis Cartilage. 2009 Mar;17(3):313-20. doi: 10.1016/j.joca.2008.07.015. Epub 2008 Sep 11.
10
Angiogenesis in osteoarthritis.
Curr Opin Rheumatol. 2008 Sep;20(5):573-80. doi: 10.1097/BOR.0b013e3283103d12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验