Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
J Inherit Metab Dis. 2012 Jul;35(4):679-87. doi: 10.1007/s10545-011-9434-1. Epub 2012 Jan 10.
Riboflavin and ubiquinone (Coenzyme Q(10), CoQ(10)) deficiencies are heterogeneous groups of autosomal recessive conditions affecting both children and adults. Riboflavin (vitamin B(2))-derived cofactors are essential for the function of numerous dehydrogenases. Genetic defects of the riboflavin transport have been detected in Brown-Vialetto-Van Laere and Fazio-Londe syndromes (C20orf54), and haploinsufficiency of GPR172B has been proposed in one patient to cause persistent riboflavin deficiency. Mutations in the electron tranferring fravoprotein genes (ETFA/ETFB) and its dehydrogenase (ETFDH) are causative for multiple acyl-CoA dehydrogenase deficiency. Mutations in ACAD9, encoding the acyl-CoA dehydrogenase 9 protein were recently reported in mitochondrial disease with respiratory chain complex I deficiency. All these conditions may respond to riboflavin therapy. CoQ(10) is a lipid-soluble component of the cell membranes, where it functions as a mobile electron and proton carrier, but also participates in other cellular processes as a potent antioxidant, and by influencing pyrimidine metabolism. The increasing number of molecular defects in enzymes of the CoQ(10) biosynthetic pathways (PDSS1, PDSS2, COQ2, COQ6, COQ9, CABC1/ADCK3) underlies the importance of these conditions. The clinical heterogeneity may reflect blocks at different levels in the complex biosynthetic pathway. Despite the identification of several primary CoQ(10) deficiency genes, the number of reported patients is still low, and no true genotype-phenotype correlations are known which makes the genetic diagnosis still difficult. Additionally to primary CoQ(10) deficiencies, where the mutation impairs a protein directly involved in CoQ(10) biosynthesis, we can differentiate secondary deficiencies. CoQ(10) supplementation may be beneficial in both primary and secondary deficiencies and therefore the early recognition of these diseases is of utmost importance.
核黄素和泛醌(辅酶 Q(10),CoQ(10))缺乏症是一组常染色体隐性遗传疾病,影响儿童和成人。核黄素(维生素 B(2))衍生的辅助因子对于许多脱氢酶的功能至关重要。已经在 Brown-Vialetto-Van Laere 和 Fazio-Londe 综合征(C20orf54)中检测到核黄素转运的遗传缺陷,并且在一名患者中提出 GPR172B 的单倍不足可能导致持续性核黄素缺乏。电子转移黄素蛋白基因(ETFA/ETFB)及其脱氢酶(ETFDH)的突变是导致多种酰基辅酶 A 脱氢酶缺乏症的原因。最近在呼吸链复合体 I 缺陷的线粒体疾病中报道了编码酰基辅酶 A 脱氢酶 9 蛋白的 ACAD9 基因突变。所有这些情况都可能对核黄素治疗有反应。CoQ(10) 是细胞膜的脂溶性成分,在其中作为可移动的电子和质子载体发挥作用,但也通过作为有效的抗氧化剂和影响嘧啶代谢参与其他细胞过程。越来越多的 CoQ(10) 生物合成途径中的酶(PDSS1、PDSS2、COQ2、COQ6、COQ9、CABC1/ADCK3)的分子缺陷表明这些情况的重要性。临床表现的异质性可能反映了复杂生物合成途径中不同水平的阻滞。尽管已经鉴定了几种原发性 CoQ(10) 缺乏症基因,但报告的患者数量仍然较少,并且不知道真正的基因型-表型相关性,这使得遗传诊断仍然困难。除了直接影响 CoQ(10) 生物合成的蛋白质的原发性 CoQ(10) 缺乏症外,我们还可以区分继发性缺乏症。原发性和继发性缺乏症均可补充 CoQ(10),因此早期识别这些疾病至关重要。