Ehlert Frederick J, Suga Hinako, Griffin Michael T
Department of Pharmacology, University of California, Irvine, USA.
J Vis Exp. 2011 Dec 26(58):e3179. doi: 10.3791/3179.
When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (τ). The estimate of τK(obs) of one agonist, divided by that of another, is a relative measure of K(b) (RA(i)). For any receptor exhibiting constitutive activity, it is possible to estimate a parameter proportional to the efficacy of the free receptor complex (τ(sys)). In this case, the K(b) value of an agonist is equivalent to τK(obs)/τ(sys). Our method is useful for determining the selectivity of an agonist for receptor subtypes and for quantifying agonist-receptor signaling through different G proteins.
当激动剂激活一群G蛋白偶联受体(GPCR)时,它会引发一条信号通路,最终导致细胞或组织产生反应。这个过程可以在单个受体、一群受体或下游反应的层面进行分析。在这里,我们描述如何分析下游反应,以获得单个受体活性状态下激动剂亲和常数的估计值。受体表现为在活性状态和非活性状态之间交替的量子开关(图1)。活性状态与特定的G蛋白或其他信号伴侣相互作用。在没有配体的情况下,非活性状态占主导。激动剂的结合增加了受体转换为活性状态的概率,因为其对活性状态的亲和常数(K(b))远大于对非活性状态的亲和常数(K(a))。群体中所有受体的随机输出之和在时间上产生恒定水平的受体激活。引发半数最大受体激活的激动剂浓度的倒数等同于观察到的亲和常数(K(obs)),处于活性状态的激动剂 - 受体复合物的比例定义为效能(ε)(图2)。已经开发出分析GPCR下游反应的方法,能够估计激动剂的K(obs)和相对效能。在本报告中,我们展示了如何修改此分析以估计相对于另一种激动剂的激动剂K(b)值。对于表现出组成性活性的测定,我们展示了如何以M(-1)的绝对单位估计K(b)。我们分析激动剂浓度 - 反应曲线的方法包括使用操作模型进行全局非线性回归。我们描述了一种使用软件应用程序Prism(GraphPad Software, Inc., San Diego, CA)的程序。该分析得出K(obs)与一个与效能成比例的参数(τ)的乘积的估计值。一种激动剂的τK(obs)估计值除以另一种激动剂的估计值,是K(b)的相对度量(RA(i))。对于任何表现出组成性活性的受体,有可能估计一个与游离受体复合物的效能成比例的参数(τ(sys))。在这种情况下,激动剂的K(b)值等同于τK(obs)/τ(sys)。我们的方法对于确定激动剂对受体亚型的选择性以及通过不同G蛋白量化激动剂 - 受体信号传导很有用。