Sección de Biotecnología, Subdepartamento, Innovación, Desarrollo, Transferencia Tecnológica (I+D+T) y Evaluación de Tecnologías Sanitarias (ETESA), Instituto de Salud Pública, Santiago, Chile.
Laboratorio de Inmunología, Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.
Front Immunol. 2023 Sep 18;14:1186188. doi: 10.3389/fimmu.2023.1186188. eCollection 2023.
The development of vaccine adjuvants is of interest for the management of chronic diseases, cancer, and future pandemics. Therefore, the role of Toll-like receptors (TLRs) in the effects of vaccine adjuvants has been investigated. TLR4 ligand-based adjuvants are the most frequently used adjuvants for human vaccines. Among TLR family members, TLR4 has unique dual signaling capabilities due to the recruitment of two adapter proteins, myeloid differentiation marker 88 (MyD88) and interferon-β adapter inducer containing the toll-interleukin-1 receptor (TIR) domain (TRIF). MyD88-mediated signaling triggers a proinflammatory innate immune response, while TRIF-mediated signaling leads to an adaptive immune response. Most studies have used lipopolysaccharide-based ligands as TLR4 ligand-based adjuvants; however, although protein-based ligands have been proven advantageous as adjuvants, their mechanisms of action, including their ability to undergo structural modifications to achieve optimal immunogenicity, have been explored less thoroughly. In this work, we characterized the effects of two protein-based adjuvants (PBAs) on TLR4 signaling via the recruitment of MyD88 and TRIF. As models of TLR4-PBAs, we used hemocyanin from (FLH) and a recombinant surface immunogenic protein (rSIP) from . We determined that rSIP and FLH are partial TLR4 agonists, and depending on the protein agonist used, TLR4 has a unique bias toward the TRIF or MyD88 pathway. Furthermore, when characterizing gene products with MyD88 and TRIF pathway-dependent expression, differences in TLR4-associated signaling were observed. rSIP and FLH require MyD88 and TRIF to activate nuclear factor kappa beta (NF-κB) and interferon regulatory factor (IRF). However, rSIP and FLH have a specific pattern of interleukin 6 (IL-6) and interferon gamma-induced protein 10 (IP-10) secretion associated with MyD88 and TRIF recruitment. Functionally, rSIP and FLH promote antigen cross-presentation in a manner dependent on TLR4, MyD88 and TRIF signaling. However, FLH activates a specific TRIF-dependent signaling pathway associated with cytokine expression and a pathway dependent on MyD88 and TRIF recruitment for antigen cross-presentation. Finally, this work supports the use of these TLR4-PBAs as clinically useful vaccine adjuvants that selectively activate TRIF- and MyD88-dependent signaling to drive safe innate immune responses and vigorous Th1 adaptive immune responses.
疫苗佐剂的发展对于慢性疾病、癌症和未来大流行的管理具有重要意义。因此,人们研究了 Toll 样受体(TLR)在疫苗佐剂作用中的作用。基于 Toll 样受体 4(TLR4)配体的佐剂是最常用于人类疫苗的佐剂。在 TLR 家族成员中,TLR4 由于招募两种衔接蛋白(髓样分化标记物 88(MyD88)和干扰素-β衔接物诱导含 Toll-白细胞介素-1 受体(TIR)域(TRIF))而具有独特的双重信号转导能力。MyD88 介导的信号转导触发促炎先天免疫反应,而 TRIF 介导的信号转导导致适应性免疫反应。大多数研究都使用脂多糖(LPS)为基础的配体作为 TLR4 配体佐剂;然而,尽管蛋白基配体已被证明作为佐剂具有优势,但它们的作用机制,包括其进行结构修饰以达到最佳免疫原性的能力,尚未得到更深入的研究。在这项工作中,我们通过 MyD88 和 TRIF 的募集来表征两种蛋白基佐剂(PBAs)对 TLR4 信号的影响。作为 TLR4-PBA 的模型,我们使用了 (FLH)的血蓝蛋白和 (rSIP)的重组表面免疫蛋白。我们确定 rSIP 和 FLH 是 TLR4 的部分激动剂,并且取决于所使用的蛋白激动剂,TLR4 对 TRIF 或 MyD88 途径具有独特的偏向性。此外,在对具有 MyD88 和 TRIF 途径依赖性表达的基因产物进行表征时,观察到 TLR4 相关信号的差异。rSIP 和 FLH 需要 MyD88 和 TRIF 来激活核因子 kappa B(NF-κB)和干扰素调节因子(IRF)。然而,rSIP 和 FLH 具有与 MyD88 和 TRIF 募集相关的特定模式的白细胞介素 6(IL-6)和干扰素 γ诱导蛋白 10(IP-10)分泌。功能上,rSIP 和 FLH 以依赖 TLR4、MyD88 和 TRIF 信号的方式促进抗原交叉呈递。然而,FLH 激活与细胞因子表达相关的特定 TRIF 依赖性信号通路,以及依赖 MyD88 和 TRIF 募集用于抗原交叉呈递的通路。最后,这项工作支持将这些 TLR4-PBA 用作临床上有用的疫苗佐剂,它们选择性地激活 TRIF 和 MyD88 依赖性信号转导,以驱动安全的先天免疫反应和强烈的 Th1 适应性免疫反应。