Ehlert Frederick J
Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
Naunyn Schmiedebergs Arch Pharmacol. 2008 Jun;377(4-6):549-77. doi: 10.1007/s00210-008-0260-4. Epub 2008 Feb 6.
The phenomenon of "ligand-directed signaling" is often considered to be inconsistent with the traditional receptor theory. In this review, I show how the mathematics of the receptor theory can be used to measure the observed affinity and relative efficacy of protean ligands at G protein-coupled receptors. The basis of this analysis rests on the assumption that the fraction of agonist bound in the form of the active receptor-G protein-guanine nucleotide complex is the biochemical equivalent of the pharmacological stimulus. Consequently, this stimulus function is analogous to the current response of a ligand-gated ion channel. Because guanosine triphosphate (GTP) greatly inhibits the formation of the active quaternary complex, even the most efficacious agonists probably only elicit partial receptor activation, and it seems likely that the ceiling of 100% receptor activation is not reached in the intact cell with high intracellular concentrations of GTP. Under these conditions, the maximum of the stimulus function is proportional to the ratio of microscopic affinity constants of the agonist for ground and active states. Ligand-directed signaling depends on the existence of different active states of the receptor with different selectivities for different G proteins or other effectors. This phenomenon can be characterized using classic pharmacological methods. Although not widely appreciated, it is possible to estimate the product of observed affinity and intrinsic efficacy expressed relative to that of another agonist (intrinsic relative activity) through the analysis of the concentration-response curves. No other information is required. This approach should be useful in quantifying agonist activity and in converting the two disparate parameters of potency and maximal response into a single parameter dependent only on the agonist-receptor-effector complex.
“配体导向信号传导”现象通常被认为与传统受体理论不一致。在这篇综述中,我展示了如何运用受体理论的数学方法来测量在G蛋白偶联受体上观察到的多态配体的亲和力和相对效能。该分析的基础基于这样一个假设:以活性受体 - G蛋白 - 鸟嘌呤核苷酸复合物形式结合的激动剂比例是药理学刺激的生化等效物。因此,这种刺激函数类似于配体门控离子通道的电流响应。由于三磷酸鸟苷(GTP)极大地抑制了活性四级复合物的形成,即使是最有效的激动剂可能也只能引发部分受体激活,并且在具有高细胞内GTP浓度的完整细胞中似乎不太可能达到100%受体激活的上限。在这些条件下,刺激函数的最大值与激动剂对基态和活性态的微观亲和常数之比成正比。配体导向信号传导取决于受体存在对不同G蛋白或其他效应器具有不同选择性的不同活性状态。这种现象可以用经典药理学方法来表征。尽管尚未得到广泛认可,但通过分析浓度 - 反应曲线,可以估计相对于另一种激动剂观察到的亲和力和内在效能的乘积(内在相对活性)。不需要其他信息。这种方法在量化激动剂活性以及将效能和最大反应这两个不同参数转换为仅依赖于激动剂 - 受体 - 效应器复合物的单一参数方面应该是有用的。