Department of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
Hypertension. 2012 Feb;59(2):500-6. doi: 10.1161/HYPERTENSIONAHA.111.185520. Epub 2012 Jan 9.
Overactivation of the mineralocorticoid receptor signaling is implicated in cardiovascular disease, including hypertensive heart disease. Oxidative stress is suggested to augment mineralocorticoid receptor signal transduction, but the precise mechanisms remain unclear. Mineralocorticoid receptor activity is regulated by multiple factors, in addition to plasma ligand levels. We previously identified Rac1 GTPase as a modulator of mineralocorticoid receptor activity. Here we show that oxidative stress induces mineralocorticoid receptor activation in a ligand-independent, Rac1-depenent manner in cardiomyocytes. Oxidant stress was induced in rat cultured cardiomyocytes (H9c2) by l-buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. BSO depleted intracellular glutathione and concomitantly increased reactive oxygen species (199%; P<0.01). BSO significantly enhanced the corticosterone-induced, mineralocorticoid receptor-dependent luciferase reporter activity (186%; P<0.01) and basal luciferase activity without ligand stimulation. These effects were inhibited by the antioxidant N-acetylcysteine. The ligand independency of BSO action was indicated using a mutant mineralocorticoid receptor that does not bind ligands. With this mutant mineralocorticoid receptor, BSO-evoked mineralocorticoid receptor activation remained intact, whereas ligand-induced mineralocorticoid receptor activation was abolished. We next examined the involvement of Rac1. BSO increased active Rac1 in a redox-dependent fashion, and Rac inhibition suppressed the enhancing effect of BSO. Constitutively active Rac1, indeed, potentiated mineralocorticoid receptor transactivation. Furthermore, mineralocorticoid receptor transactivation by BSO was accompanied by enhanced nuclear accumulation of mineralocorticoid receptor. We conclude that alteration of redox state modulates mineralocorticoid receptor-dependent transcriptional activity via Rac1 in the heart. This redox-sensitive, ligand-independent mineralocorticoid receptor activation may contribute to the processes by which oxidant stress promotes cardiac injury.
醛固酮受体信号的过度激活与心血管疾病有关,包括高血压性心脏病。氧化应激被认为增强了醛固酮受体信号转导,但确切的机制仍不清楚。醛固酮受体的活性除了受血浆配体水平的影响外,还受多种因素的调节。我们之前发现 Rac1 GTPase 是醛固酮受体活性的调节剂。在这里,我们显示氧化应激以配体非依赖性、Rac1 依赖性的方式在心肌细胞中诱导醛固酮受体激活。在大鼠培养的心肌细胞(H9c2)中,通过 l-丁硫氨酸亚砜胺(BSO)诱导氧化应激,BSO 抑制谷胱甘肽的合成。BSO 耗尽细胞内谷胱甘肽,同时增加活性氧(增加 199%;P<0.01)。BSO 显著增强了皮质酮诱导的、醛固酮受体依赖性荧光素酶报告基因活性(增加 186%;P<0.01)和无配体刺激的基础荧光素酶活性。这些作用被抗氧化剂 N-乙酰半胱氨酸抑制。使用不结合配体的突变醛固酮受体表明 BSO 作用的配体非依赖性。用这种突变醛固酮受体,BSO 诱导的醛固酮受体激活仍然完整,而配体诱导的醛固酮受体激活被废除。我们接下来研究了 Rac1 的参与。BSO 以氧化还原依赖的方式增加活性 Rac1,Rac 抑制抑制了 BSO 的增强作用。组成性激活的 Rac1 确实增强了醛固酮受体的反式激活。此外,BSO 诱导的醛固酮受体转激活伴随着醛固酮受体核内积累的增强。我们的结论是,氧化还原状态的改变通过心脏中的 Rac1 调节醛固酮受体依赖性转录活性。这种氧化还原敏感的、配体非依赖性的醛固酮受体激活可能有助于氧化应激促进心脏损伤的过程。