Suppr超能文献

通过正向遗传学方法揭示专性细胞内病原体沙眼衣原体的毒力决定因素。

Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches.

机构信息

Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1263-8. doi: 10.1073/pnas.1117884109. Epub 2012 Jan 9.

Abstract

Chlamydia trachomatis, a pathogen responsible for diseases of significant clinical and public health importance, remains poorly characterized because of its intractability to routine molecular genetic manipulation. We have developed a combinatorial approach to rapidly generate a comprehensive library of genetically defined mutants. Chemical mutagenesis, coupled with whole-genome sequencing (WGS) and a system for DNA exchange within infected cells, was used to generate Chlamydia mutants with distinct phenotypes, map the underlying genetic lesions, and generate isogenic strains. As a result, we identified mutants with altered glycogen metabolism, including an attenuated strain defective for type II secretion. The coupling of chemically induced gene variation and WGS to establish genotype-phenotype associations should be broadly applicable to the large list of medically and environmentally important microorganisms currently intractable to genetic analysis.

摘要

沙眼衣原体是一种病原体,可导致具有重要临床和公共卫生意义的疾病,但由于其难以进行常规分子遗传操作,因此对其了解甚少。我们开发了一种组合方法来快速生成遗传定义突变体的综合文库。化学诱变,结合全基因组测序(WGS)和感染细胞内的 DNA 交换系统,用于生成具有不同表型的衣原体突变体,绘制潜在的遗传损伤图谱,并生成同基因株。结果,我们鉴定出了具有改变的糖原代谢的突变体,包括 II 型分泌缺陷的衰减株。将化学诱导的基因变异与 WGS 相结合以建立基因型-表型关联,应该广泛适用于目前难以进行遗传分析的大量具有医学和环境重要性的微生物。

相似文献

1
Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1263-8. doi: 10.1073/pnas.1117884109. Epub 2012 Jan 9.
2
Forward genetic approaches in Chlamydia trachomatis.
J Vis Exp. 2013 Oct 23(80):e50636. doi: 10.3791/50636.
5
Reassessing the role of the secreted protease CPAF in Chlamydia trachomatis infection through genetic approaches.
Pathog Dis. 2014 Aug;71(3):336-51. doi: 10.1111/2049-632X.12179. Epub 2014 May 16.
6
Forward and Reverse Genetic Analysis of Chlamydia.
Methods Mol Biol. 2019;2042:185-204. doi: 10.1007/978-1-4939-9694-0_13.
7
8
Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.
Cell Host Microbe. 2015 May 13;17(5):716-25. doi: 10.1016/j.chom.2015.03.014. Epub 2015 Apr 23.
9
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.
PLoS One. 2015 Jul 24;10(7):e0133420. doi: 10.1371/journal.pone.0133420. eCollection 2015.

引用本文的文献

1
Genetic transformation of species and characterization of vaginolysin and sialidase mutants.
bioRxiv. 2025 May 10:2025.05.09.653190. doi: 10.1101/2025.05.09.653190.
2
The Chlamydia effector Dre1 binds dynactin to reposition host organelles during infection.
Cell Rep. 2025 Apr 22;44(4):115509. doi: 10.1016/j.celrep.2025.115509. Epub 2025 Apr 4.
3
: a model for intracellular bacterial parasitism.
J Bacteriol. 2025 Mar 20;207(3):e0036124. doi: 10.1128/jb.00361-24. Epub 2025 Feb 20.
4
Development of a lambda Red based system for gene deletion in Chlamydia.
PLoS One. 2024 Nov 14;19(11):e0311630. doi: 10.1371/journal.pone.0311630. eCollection 2024.
5
Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes.
Chem Rev. 2024 Apr 24;124(8):4863-4934. doi: 10.1021/acs.chemrev.3c00811. Epub 2024 Apr 12.
7
Expression of HPV-16 E6 and E7 oncoproteins alters developmental cycle and induces increased levels of immune regulatory molecules.
Front Cell Infect Microbiol. 2023 Sep 8;13:1214017. doi: 10.3389/fcimb.2023.1214017. eCollection 2023.
8
Advances in genetic manipulation of .
Front Immunol. 2023 Jun 28;14:1209879. doi: 10.3389/fimmu.2023.1209879. eCollection 2023.
9
Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria.
Front Cell Infect Microbiol. 2023 Jun 19;13:1202245. doi: 10.3389/fcimb.2023.1202245. eCollection 2023.
10
The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches.
Curr Opin Microbiol. 2023 Aug;74:102330. doi: 10.1016/j.mib.2023.102330. Epub 2023 May 27.

本文引用的文献

2
Generation of targeted Chlamydia trachomatis null mutants.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7189-93. doi: 10.1073/pnas.1102229108. Epub 2011 Apr 11.
4
Risk of sequelae after Chlamydia trachomatis genital infection in women.
J Infect Dis. 2010 Jun 15;201 Suppl 2:S134-55. doi: 10.1086/652395.
5
Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.
Antimicrob Agents Chemother. 2009 Nov;53(11):4604-11. doi: 10.1128/AAC.00477-09. Epub 2009 Aug 17.
6
The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor.
Infect Immun. 2008 Jun;76(6):2273-83. doi: 10.1128/IAI.00102-08. Epub 2008 Mar 17.
7
The impact of next-generation sequencing technology on genetics.
Trends Genet. 2008 Mar;24(3):133-41. doi: 10.1016/j.tig.2007.12.007. Epub 2008 Feb 11.
8
Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance.
J Bacteriol. 2008 Mar;190(5):1605-14. doi: 10.1128/JB.01592-07. Epub 2007 Dec 14.
9
Mechanisms of host cell exit by the intracellular bacterium Chlamydia.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11430-5. doi: 10.1073/pnas.0703218104. Epub 2007 Jun 25.
10
Tackling the intractable - approaching the genetics of Chlamydiales.
Int J Med Microbiol. 2007 Nov;297(7-8):569-76. doi: 10.1016/j.ijmm.2007.03.011. Epub 2007 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验