Faculty of Agriculture, Food and Natural Resources, University of Sydney, Sydney New South Wales 2006, Australia.
Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):537-46. doi: 10.1098/rstb.2011.0270.
In response to short-term fluctuations in atmospheric CO(2) concentration, c(a), plants adjust leaf diffusive conductance to CO(2), g(c), via feedback regulation of stomatal aperture as part of a mechanism for optimizing CO(2) uptake with respect to water loss. The operational range of this elaborate control mechanism is determined by the maximum diffusive conductance to CO(2), g(c(max)), which is set by the size (S) and density (number per unit area, D) of stomata on the leaf surface. Here, we show that, in response to long-term exposure to elevated or subambient c(a), plants alter g(c(max)) in the direction of the short-term feedback response of g(c) to c(a) via adjustment of S and D. This adaptive feedback response to c(a), consistent with long-term optimization of leaf gas exchange, was observed in four species spanning a diverse taxonomic range (the lycophyte Selaginella uncinata, the fern Osmunda regalis and the angiosperms Commelina communis and Vicia faba). Furthermore, using direct observation as well as flow cytometry, we observed correlated increases in S, guard cell nucleus size and average apparent 1C DNA amount in epidermal cell nuclei with increasing c(a), suggesting that stomatal and leaf adaptation to c(a) is linked to genome scaling.
针对大气中 CO2 浓度的短期波动,c(a),植物通过反馈调节气孔孔径来调整叶片 CO2 扩散导度 g(c),作为优化 CO2 吸收与水分损失关系的机制的一部分。这个精细的调控机制的作用范围由最大 CO2 扩散导度 g(c(max))决定,而 g(c(max))则由叶片表面气孔的大小 (S)和密度 (单位面积上的数量,D) 决定。在这里,我们表明,植物在长期暴露于升高或亚环境 c(a)时,通过 S 和 D 的调整,使 g(c(max))朝着 g(c)对 c(a)的短期反馈响应的方向变化。这种对 c(a)的适应性反馈响应与叶片气体交换的长期优化一致,在跨越广泛分类范围的四个物种中观察到(石松属植物卷柏、凤尾蕨属植物 Osmunda regalis 和被子植物鸭跖草属植物 Commelina communis 和蚕豆属植物 Vicia faba)。此外,我们通过直接观察和流式细胞术观察到,随着 c(a)的增加,S、保卫细胞细胞核大小和表皮细胞细胞核中平均表观 1C DNA 含量呈相关增加,这表明气孔和叶片对 c(a)的适应与基因组缩放有关。