Department of Genetics, University of Georgia, Athens, Georgia, United States of America.
PLoS Genet. 2009 Nov;5(11):e1000732. doi: 10.1371/journal.pgen.1000732. Epub 2009 Nov 20.
Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.
最近对玉米基因组的全面序列分析使得详细发现和描述这个复杂核环境中的所有转座元件(TEs)成为可能。在计算机辅助搜索反转录转座子,即通过 RNA 中间物反转录转座的 TEs 时,反复优化了结构和同源性标准,最终结果通过手动检查进行验证。在玉米自交系 B73 中,反转录转座子占据了核基因组的大部分(>75%)。在长末端重复(LTR)反转录转座子类反转录转座子中发现了前所未有的遗传多样性,超过 400 个家族(>350 个新发现的家族)贡献了超过 31000 个完整元件。另外两类反转录转座子,SINEs(4 个家族)和 LINEs(至少 30 个家族),分别观察到贡献了 1991 个和大约 35000 个拷贝,或 B73 核基因组的总和约为 1%。对于完整的元件,玉米中所有反转录转座子家族的中位数拷贝数为 2,因为>250 个 LTR 反转录转座子家族只包含一个或两个可以在 B73 草案序列中检测到的完整成员。大多数(也许全部)研究的反转录转座子家族在玉米基因组中表现出非随机分散,LINEs、SINEs 和许多低拷贝数 LTR 反转录转座子表现出在富含基因区域积累的偏好。相反,大多数(但不是全部)中拷贝数和高拷贝数 LTR 反转录转座子被发现优先在基因贫瘠区域(如着丝粒异染色质)积累,而少数高拷贝数家族则表现出相反的偏好。基因组中 LTR 反转录转座子密度最高的区域包含最低的 LTR 反转录转座子多样性。这些结果表明,玉米基因组为大量不同的反转录元件提供了生存和繁衍的多种生态位,这些反转录元件已经进化为不同程度地占据和利用这种基因组多样性。