Palaeoecology, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht University, 3584 CD, Utrecht, The Netherlands.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4035-40. doi: 10.1073/pnas.1100371108. Epub 2011 Feb 17.
A principle response of C3 plants to increasing concentrations of atmospheric CO(2) (CO(2)) is to reduce transpirational water loss by decreasing stomatal conductance (g(s)) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate. Therefore, it is important to determine the adaptation of vegetation to the expected anthropogenic rise in CO(2). Short-term stomatal opening-closing responses of vegetation to increasing CO(2) are described by free-air carbon enrichments growth experiments, and evolutionary adaptations are known from the geological record. However, to date the effects of decadal to centennial CO(2) perturbations on stomatal conductance are still largely unknown. Here we reconstruct a 34% (±12%) reduction in maximum stomatal conductance (g(smax)) per 100 ppm CO(2) increase as a result of the adaptation in stomatal density (D) and pore size at maximal stomatal opening (a(max)) of nine common species from Florida over the past 150 y. The species-specific g(smax) values are determined by different evolutionary development, whereby the angiosperms sampled generally have numerous small stomata and high g(smax), and the conifers and fern have few large stomata and lower g(smax). Although angiosperms and conifers use different D and a(max) adaptation strategies, our data show a coherent response in g(smax) to CO(2) rise of the past century. Understanding these adaptations of C3 plants to rising CO(2) after decadal to centennial environmental changes is essential for quantification of plant physiological forcing at timescales relevant for global warming, and they are likely to continue until the limits of their phenotypic plasticity are reached.
C3 植物对大气中二氧化碳浓度(CO2)升高的主要反应是通过降低气孔导度(gs)来减少蒸腾失水,同时提高同化速率。通过这种适应,植被具有改变水文和气候的能力。因此,确定植被对预期人为 CO2 上升的适应能力非常重要。通过自由空气碳增富生长实验描述了植被对 CO2 短期的气孔开闭反应,并且从地质记录中也了解了进化适应。然而,迄今为止,大气 CO2 浓度的数十年到百年波动对气孔导度的影响在很大程度上仍然未知。在这里,我们重建了佛罗里达州的九种常见物种在过去 150 年中气孔密度(D)和最大开度时气孔孔径(a(max))的适应性导致的最大气孔导度(gsmax)每增加 100 ppm CO2 减少 34%(±12%)。gsmax 值因物种而异,这是由于不同的进化发展,其中采样的被子植物通常具有许多小气孔和较高的 gsmax,而裸子植物和蕨类植物具有较少的大气孔和较低的 gsmax。尽管被子植物和裸子植物使用不同的 D 和 a(max)适应策略,但我们的数据显示,过去一个世纪,gsmax 对 CO2 上升的反应具有一致性。了解 C3 植物对过去数十年到百年环境变化后 CO2 上升的这些适应能力,对于量化与全球变暖相关时间尺度上的植物生理强迫至关重要,并且它们可能会继续下去,直到达到其表型可塑性的极限。