Suppr超能文献

电流变悬浮液在剪切流中的建模与分析。

Modeling and analysis of electrorheological suspensions in shear flow.

机构信息

Intellectual Textile System Research Center (ITRC) and School of Materials Science and Engineering, College of Engineering, Seoul National University, Shillim9dong 56-1, Kwanakgu, Seoul, 151-744 Republic of Korea.

出版信息

Langmuir. 2012 Feb 14;28(6):3077-84. doi: 10.1021/la204515q. Epub 2012 Jan 31.

Abstract

A model capable of describing the flow behavior of electrorheological (ER) suspensions under different electric field strengths and over the full range of shear rates is proposed. Structural reformation in the low shear rate region is investigated where parts of a material are in an undeformed state, while aligned structures reform under the shear force. The model's predictions were compared with the experimental data of some ER fluids as well as the CCJ (Cho-Choi-Jhon) model. This simple model's predictions of suspension flow behavior with subsequent aligned structure reformation agreed well with the experimental data, both quantitatively and qualitatively. The proposed model plausibly predicted the static yield stress, whereas the CCJ model and the Bingham model predicted only the dynamic yield stress. The master curve describing the apparent viscosity was obtained by appropriate scaling both axes, which showed that a combination of dimensional analysis and flow curve analysis using the proposed model yielded a quantitatively and qualitatively precise description of ER fluid rheological behavior based on relatively few experimental measurements.

摘要

提出了一种能够描述不同电场强度下电流变(ER)悬浮液流动行为并涵盖全剪切速率范围的模型。研究了低剪切速率区域的结构重组,其中材料的一部分处于未变形状态,而在剪切力作用下,对齐结构会发生重组。模型的预测结果与一些 ER 流体的实验数据以及 CCJ(Cho-Choi-Jhon)模型进行了比较。该简单模型对悬浮液流动行为及其后续对齐结构重组的预测与实验数据在定量和定性上都非常吻合。所提出的模型合理地预测了静态屈服应力,而 CCJ 模型和宾汉姆模型仅预测了动态屈服应力。通过适当缩放两个轴获得了描述表观粘度的主曲线,这表明通过使用所提出的模型进行尺寸分析和流动曲线分析的组合,可以基于相对较少的实验测量,对 ER 流体流变行为进行定量和定性的精确描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验